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Abstract

Climate type is one of the potentially most
relevant pieces of metadata for identify-
ing studies in evidence-based environmen-
tal management. In this paper, we pro-
pose a method for automatically predict-
ing the climate type in environmental sci-
ence literature using NLP techniques, rel-
ative to a pre-existing set of climate type
categories. Our main approaches com-
bine toponym detection and resolution us-
ing two different resources with support
vector machines. The results show great
promise, but also further challenges, for
using NLP to extract information from the
vast and rapidly growing collection of en-
vironmental sciences literature.

1 Introduction

In this paper, we investigate the task of automatic
prediction of climate type (e.g. temperate or arid)
in environmental science abstracts. The climate
type of an environmental science study is crucial
information, which gives context to the research
and insight into its wider implications and applica-
bility. Availability of climate information as meta-
data has clear value to researchers performing a
systematic review of the literature or comprehen-
sive analysis of the evidence. However, the man-
ual annotation of climate type over a large volume
of literature is a time-consuming task. In this pa-
per, we seek to automate the climate annotation
process with natural language processing (NLP)
techniques. The task of climate type classification
is complex as although the label set is relatively
small, the geographic granularity is fine and to-
ponym ambiguity becomes a significant problem
— toponyms commonly mentioned in the envi-
ronmental sciences (e.g. Murray River) are often
large and cover multiple climates, which presents

difficulties for a point-based representation of to-
ponyms. Initially, experiments are run to exam-
ine the effectiveness of the direct application of
the classifiers developed by Willett et al. (2012)
for study region classification. We then investigate
methods for adapting these techniques to the cli-
mate task through the modification of the toponym
resolution component of our classifiers. These ap-
proaches include utilizing a Köppen-Geiger cli-
mate classification world map to resolve toponyms
to climate instead of region, in addition to exper-
iments with targeting types of toponyms reliable
for identifying climate.

2 Related Work

The methodology used to extract and disam-
biguate toponyms is based on a standard approach
to geographic information retrieval, which was
presented, e.g., by Stokes et al. (2008) in their
study on the performance of individual compo-
nents of a geographic IR system. In particu-
lar, the named entity recognition and classifica-
tion (NERC) and toponym resolution (TR) com-
ponents are the basis for the main classifiers in this
study.

The unique opportunities and challenges spe-
cific to retrieving geospatial information have
been well documented, particularly in the context
of geospatial information retrieval where queries
and documents have a geospatial dimension (San-
tos and Chaves, 2006). Aside from finding loca-
tions in the text, the disambiguation of what exact
location a term in a text is referring to presents
a unique challenge in itself, and a variety of ap-
proaches have been suggested and demonstrated
for this task (Overell and Rüger, 2006).

Toponym resolution is the process of taking
each identified named entity from the NERC, and
attempting to determine the specific location to
which it is referring. This involves strategies such
as shared relationships between potential identi-
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fications of locations, prominence in Wikipedia,
and population statistics.

As a specific instance of toponym resolution
over environmental sciences data, Willett et al.
(2012) proposed a method for predicting the
“study region” of a published abstract, based on
text categorisation techniques using features in-
cluding frequency distributions of resolved to-
ponyms and a bag of word unigrams. Their best
method was able to determine the study region
with an accuracy of 0.892, combining toponym
resolution from DBpedia and GeoNames with the
bag-of-toponyms features. We adapt this method
to climate type classification, and present details
of the method in Section 5.

This work is inspired in part by work on ev-
idence based medicine (EBM). As Sackett et al.
(1996) define it: “Evidence based medicine is the
conscientious, explicit, and judicious use of cur-
rent best evidence in making decisions about the
care of individual patients.” The reasons for mov-
ing towards an evidence-based model of environ-
mental management have obvious parallels to the
motivation for the practice of EBM. Although the
structure of evidence will differ between the do-
mains, many of the techniques applied in research
for EBM are likely to have application for our cur-
rent task. Successful applications of NLP to EBM
include sentence categorization for information on
randomized controlled trials (Chung, 2009; Kim et
al., 2011), the labelling of sentences with “PICO”
(Patient/Problem, Intervention, Comparison and
Outcome) labels to aid clinical information re-
trieval (Boudin et al., 2010), and the automatic
assignment of Medical Subject Headings (MeSH)
terms to PubMed abstracts (Gaudinat and Boyer,
2002).

3 Resources

In this section, we provide details of key resources
used in this paper, namely:

• Eco Evidence, a manually-curated database
of metadata for environmental science litera-
ture, which provides the basis of the data used
in our experiments

• DBpedia and GeoNames, as resources for to-
ponym resolution

• the Köppen-Geiger Climate Map of Peel et
al. (2007)

3.1 Eco Evidence
Eco Evidence (Webb et al., 2011) is a tool for liter-
ature review and evidence synthesis, consisting of
two parts. The first is the underlying Eco Evidence
Database (EED) (Webb et al., 2012a), in which the
evidence items are stored. The citations for envi-
ronmental studies are catalogued in the database
as separate entities, and evidence items may be
stored by means of linking them to the citation for
the study from which the information came. Addi-
tional details about the study’s location, scale and
ecosystem can also be stored with each citation to
aid the process of filtering relevant evidence. An
example of a record in the EED is given in Fig-
ure 1. The database is in active use in a number of
research projects currently, and evidence therein
has also formed the basis of several published sys-
tematic reviews (Webb et al., 2012b).

The Eco Evidence Analyser (EEA) retrieves
the potentially relevant evidence from the EED
for a hypothesised cause and effect, then weights
and analyses the selected evidence to determine
whether there is adequate evidence to support or
reject the hypothesis. For the Eco Evidence Anal-
yser to be effective, the underlying EED must
contain as much evidence as possible. However,
the database has to date been populated through
manual annotation of citations with their evidence
items, which is a time-consuming process (Webb
et al., 2012b). Our work is motivated by the possi-
bility of streamlining the population of the EED,
by automatically extracting climate information,
but potentially in the future extending NLP-based
extraction to other evidence items.

3.2 Toponym Resolution
Toponym resolution is a key component of our
experiments, and we worked with two different
resources in disambiguating toponyms: DBpedia
and GeoNames.

DBpedia (http://www.dbpedia.org) is
a database of structured content extracted from
Wikipedia. We utilize DBpedia as a source of in-
formation for resolving ambiguous toponyms by
finding the DBpedia pages for likely candidates
based on the toponym name, and extracting geo-
graphic coordinates to identify their location. For
terms with multiple meanings, DBpedia will con-
tain a disambiguation page. We use the disam-
biguation page in one of two ways:

1. the top-result TR approach: the top-ranked
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Figure 1: Screen capture of an example citation in the Eco Evidence Database, with associated classifi-
cations and an evidence item.
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Figure 2: World map of Köppen-Geiger climate classification.

result is returned; in the event that coordi-
nates are unavailable for the first possibility
on the disambiguation page, no resolution is
recorded for the term.

2. the top-5 approach: up to the top-5 results are
used to represent a given toponym

Another tool we use for toponym resolution is
GeoNames (http://www.geonames.org), a
gazetteer which is based on data from a wide
variety of sources. A toponym query via the
GeoNames search API provides a ranked list of
geospatial results, each of which is linked to in-
formation such as geo-coordinates, and the popu-
lation of towns/cities.

3.3 Köppen-Geiger Climate Map
We map geographic coordinates from DBpedia to
a world map of Köppen-Geiger climate classifica-
tion (Peel et al., 2007). The Köppen-Geiger cli-
mate classification system divides climates into
five main groups, as detailed in Figure 2 (with
each climate type represented by subclasses of the
prefix indicated in parentheses): Tropical (“A*”),
Arid (“B*”), Temperate (“C*”), Cold (“D*”) and
Polar (“E*”).

4 Dataset

The dataset used in our experiments was sourced
from the collection of 3977 titles and abstracts
from the Eco Evidence database, each of which
has been manually annotated with a climate type.
The climate types are made up of 5 basic types
— Temperate, Tropical, Dry, Polar and Alpine
— in addition to Multiple (i.e. multiple basic cli-
mate types, without specification of which specific
types) and Other. Eco Evidence does not cap-
ture information on which basic classes make up
a Multiple label, so we are not able to treat the
problem as a multi-label classification task. In-
stead, Multiple is represented in the same way as
the basic classes. Note the slight mismatch with
the climate types used in the Köppen-Geiger cli-
mate classification.

The Eco Evidence dataset is quite unbalanced,
as detailed in Table 1: Temperate is the majority
class by a very large margin, and Polar and Other
are very small minority classes.

5 Methodology

We build classifiers using the continent-level study
region classification method of Willett et al.
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Climate EU AU AF AN AS NA SA OC MU OT TOTAL

Temperate 768 390 46 0 98 1055 9 98 13 1 2478
Tropical 1 102 45 0 65 51 98 10 7 1 380
Dry 9 89 67 0 21 162 7 0 1 0 356
Polar 2 0 0 1 0 5 1 1 2 0 12
Alpine 139 1 0 0 39 278 3 0 1 2 463
Multiple 22 24 9 0 13 102 1 1 113 1 286
Other 0 1 0 0 0 1 0 0 0 0 2
TOTAL 941 607 167 1 236 1654 119 110 137 5 3977

Table 1: Distribution for the gold standard climate classifications across the gold standard study region
classifications (EU = Europe, AU = Australia, AF = Africa, AN = Antarctica, AS = Asia, NA = North
America, SA = South America, OC = Oceania [other than Australia], MU = Multiple, OT = Other; the
boldfaced number indicates the majority-class for a given continent)

(2012). First, the Stanford Named Entity Recog-
niser (Finkel et al., 2005) is used to identify
location-type NEs in each abstract. Each NE is
then mapped to a set of toponyms, based on DB-
pedia or GeoNames, and the counts of toponyms
are aggregated into bag-of-toponyms (BoT) fea-
tures. Finally, a linear-kernel support vector ma-
chine (SVM) is used to train a supervised classi-
fier.

We experiment with both: (1) study region clas-
sification (at the continent level), and a majority-
class classification for that continent; and (2) re-
placement of continent-level classes from the orig-
inal paper with climate-based classes. In the latter
case, the toponyms are resolved to climates using
the Köppen-Geiger climate classification system.
One issue that arises with the use of the climate
map is that the classifications of the climate map
do not all directly correspond to labels used in the
dataset. Temperate, Tropical and Polar have di-
rect matches, but the climate map classes Cold and
Arid do not. These two labels were mapped to the
Alpine and Dry labels respectively for the bench-
mark system. Note that this is only relevant for the
majority-class classification; in the case of the to-
ponym resolution, the supervised classifier is able
to learn its own mapping between the Köppen-
Geiger climate classification system and the 5+2-
class climate system used by Eco Evidence.

We also include structured features. That is,
separate frequency distributions of the number of
tags resolving to each climate type are used for
each zone of the abstract, based on partitioning the
abstract into 4 equal-sized zones (based on word
count). Each of these frequency distributions are
treated as separate vectors of unique features. The

title of the paper is treated as an additional fifth
zone and feature vector.

We also present a majority class baseline, that
selects the majority climate type from the train-
ing data (Temperate). In addition, we experi-
ment with taking a majority vote across the climate
type(s) that each toponym in the abstract resolves
to.

Subsequent experiments attempt to target only
toponyms more likely to reliably identify cli-
mate. This was done by excluding toponyms
of the GeoNames feature code “A”, which iden-
tifies countries, states, regions, and similar en-
tities.1 These experiments are only completed
with the GeoNames multiple result classifiers, as
no reliable method of identifying the form of to-
ponym is available in DBpedia. These experi-
ments are performed based on the hypothesis that
the point-based representation of coordinates ex-
tracted from GeoNames for these coarse-grained
toponyms may prove problematic, as larger areas
are more likely to contain more than one climate
type. Precision may therefore be enhanced by fil-
tering these toponyms out.

For all classifiers, we evaluate our model with
classification accuracy, measured using 10-fold
stratified cross-validation over the full dataset. As
our learner, we use LIBSVM with a linear kernel
(Chang and Lin, 2011).

6 Results

We first present results based on the methodology
of Willett et al. (2012) for classifying study region,
simply mapping toponyms onto continental study

1See http://www.geonames.org/export/
codes.html for a comprehensive list.
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Classifier Accuracy
Zero-R 0.623
Bag-of-Toponyms (BoT) 0.681
Bag-of-Words (BoW) 0.654
BoT + BoW 0.659
DBpedia + GeoNames top result (“dbp+Geo:TR”) 0.623
dbp+Geo:TR + BoT 0.681
dbp+Geo:TR + BoW 0.681
dbp+Geo:TR + BoT + BoW 0.687

Table 2: Accuracy for classifiers based on the method of Willett et al. (2012) when trained and tested on
climate type labels.

Classifier dbp:TR Geo:TR dbp+Geo:TR dbp:MR Geo:MR dbp+Geo:MR Geo(F)
MV 0.550 0.518 0.555 0.543 0.536 0.555 0.554
SVM 0.662 0.656 0.667 0.652 0.664 0.674 0.650
+ S 0.658 0.661 0.667 0.650 0.657 0.663 0.645
+ T 0.692 0.689 0.695 0.687 0.692 0.692 0.690
+ ST 0.691 0.691 0.694 0.687 0.689 0.685 0.689
+ W 0.674 0.677 0.681 0.673 0.678 0.682 0.674
+ SW 0.668 0.674 0.682 0.671 0.681 0.682 0.675
+ TW 0.680 0.682 0.686 0.679 0.683 0.685 0.680
+ STW 0.673 0.677 0.683 0.673 0.686 0.686 0.676

Table 3: Accuracy for DBpedia/GeoNames classifiers resolving toponyms to climate type using the
climate map (“TR” = only the top resolution being collected for a given topoynm; “MR” = multiple
resolutions; “S” = zone-based structural features; “T” = bag-of-toponyms; “W” = bag-of-words; Geo(F)
= Geo:MR without toponyms of GeoNames feature class ’A’)

regions, and replacing the class set with climate
types. The results are presented in Table 2. The
best results are achieved by using the DBpedia
and GeoNames top results (“TR”) together with
both bag-of-toponyms and bag-of-words features,
although this performs only marginally better than
the bag-of-toponyms by itself. The results in this
table suggest the continent resolution features add
no relevant information for climate classification
over bag-of-words/toponyms features. However,
location-based features do appear to have added
relevance, as the bag-of-toponyms outperforms
the bag-of-words.

We next experiment with resolving toponyms
to climate types, as detailed in Table 3. As we
can see, our classifiers struggle to outperform our
baseline classifiers. The majority vote classifiers
(“MV”) — where the majority climate type for the
different toponyms is returned — performs very
poorly on this dataset, achieving an accuracy be-
low the Zero-R classifier which simply labels ev-
ery instance with the majority class. The SVM-

based supervised approach (“SVM”) is more suc-
cessful, with the top accuracy of 0.695 achieved by
the DBpedia (“dbp”) and GeoNames (“Geo”) top-
result (“TR”) classifier in combination with a bag-
of-toponyms (“T”). Bag-of-toponyms is clearly
the most effective set of the standalone features,
with classifiers of any toponym resolution method
consistently achieving the greatest accuracy when
used in combination with bag-of-toponyms fea-
tures. However, even the highest-performing clas-
sifiers achieve only a minor improvement over the
best baseline scores, and the overall accuracy is
well below that achieved in the study region task.

The difference between DBpedia and Geo-
Names is negligible on all supervised classifiers.
Features which provide structural data (“S”) have
no substantial effect on the performance of the
classifiers, consistent with the findings of Willett
et al. (2012). The granularity filter, although pro-
viding a slight boost to the majority vote classifier,
is similarly ineffective: a total of 2991 possible
resolutions were filtered out across 1280 unique
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Label Tropical Arid Temperate Cold Polar
Tropical 0.445 0.143 0.384 0.027 0.000
Dry 0.032 0.446 0.353 0.166 0.003
Temperate 0.009 0.186 0.541 0.260 0.004
Alpine 0.002 0.141 0.184 0.658 0.015
Polar 0.000 0.000 0.278 0.611 0.111
Multiple 0.023 0.202 0.427 0.344 0.004
Other 0.000 0.333 0.667 0.000 0.000

Table 4: Toponym mapping of resolved climate from the Köppen-Geiger climate map to the correspond-
ing abstract’s gold standard climate label.

toponyms, but due to the sparsity of toponyms in
the text, the loss of information from filtering out
these resolutions outweighs any gain in precision
from avoiding ambiguity in climate resolution.

In order to investigate how much of the problem
could be attributed to incorrect disambiguation, a
classifier with “oracle” toponym disambiguation
is also tested. This oracle determined the propor-
tion of instances in the dataset that had at least one
climate resolution of a toponym that matches the
gold standard label out of all the possible disam-
biguations from the top 5 results of both DBpedia
and GeoNames. The number of matches was only
2552 out of 3977 (64.2%) abstracts. This low per-
centage suggests that the source of error cannot be
primarily explained by toponym disambiguation.
Another possible source of error for correctly dis-
ambiguated toponyms is that the toponym is re-
solved to the incorrect climate.

Based on the chosen set of label mappings,
the distribution of resolved toponyms using the
top result in DBpedia across the set of abstracts
for each gold standard label was collected (Ta-
ble 4). For each map label, the highest propor-
tion of toponyms resolves to the expected dataset
label. However, significant proportions are mis-
matched in all cases. One cause of the poor accu-
racy in climate resolution is that identifying cli-
mate generally requires a greater degree of ge-
ographic accuracy than resolving toponyms to a
continent. Regions of continental scale generally
contain more than one climatic zone (as seen in
Figure 2). Therefore, coarse-grained toponyms
representing countries or continents that provided
valuable information in classification of study re-
gion are no longer of use. The granularity filter
classifiers were developed with the intention of
filtering these out of the dataset. However, there
was too much loss of information from the already

small number of available toponyms.

7 Conclusion

In this paper, we have explored NLP approaches
to classifying climate type in environmental sci-
ence abstracts based on resolving toponyms de-
tected within the abstract to their climate type.
This was done by first disambiguating the to-
ponym with DBpedia and/or GeoNames to a set of
geographic coordinates, then referencing the co-
ordinates on a world map of climate classifica-
tion. Supervised approaches with support vector
machines also included features based on bag-of-
words, bag-of-toponyms, and structural informa-
tion. The classifiers developed in these experi-
ments had limited success in outperforming base-
line approaches. Bag-of-toponyms were demon-
strated to be the most useful feature set, and
the highest-performing classifier was DBpedia and
GeoNames top-result toponym resolution in com-
bination with bag-of-toponyms, achieving 0.695
classification accuracy.
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