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Abstract 

This study is an investigation into the effect of 

sample size on a likelihood ratio (LR) based 

forensic voice comparison (FVC) system. In 

particular, we looked into how the offender 

and suspect sample size (or the within-speaker 

sample size) would affect the performance of 

the FVC system, using spectral feature vectors 

extracted from spontaneous Japanese speech. 

For this purpose, we repeatedly conducted 

Monte Carlo method based experiments with 

different sample size, using the statistics ob-

tained from these feature vectors. LRs were 

estimated using the multivariate kernel density 

LR formula developed by Aitken and Lucy 

(2004). The derived LRs were calibrated using 

the logistic-regression calibration technique 

proposed by Brümmer and du Preez (2006). 

The performance of the FVC system was as-

sessed in terms of the log-likelihood-ratio cost 

(Cllr) and the 95% credible interval (CI), which 

are the metrics of validity and reliability, re-

spectively. We will demonstrate in this paper 

that 1) the validity of the system notably im-

proves when up to six tokens are included in 

modelling a speaker session, and 2) the system 

performance converges with the relative small 

token number (four) in the background data-

base, regardless of the token numbers in the 

test and development databases. 

1 Introduction 

It is well known and accepted that statistical ac-

curacy relies on having a sufficient amount of 

data. However, in typical forensic voice compar-

ison (FVC) casework, the crime scene recording 

is often short and contains background noise, 

which limits the choice of segments that experts 

can use for the comparison. For example, the 

word yes is one of the most commonly used 

segments in FVC. However, the number of yes 

tokens we can extract from the offender sample 

to build his/her model really depends on the re-
cording condition, something that forensic case-

workers cannot control. Thus, we need to know 

how the performance of an FVC system is influ-

enced by sample size. 

The current study employs the Likelihood Ra-

tio (LR) framework, which has been advocated 

as the logically and legally correct way of ana-

lysing and presenting forensic evidence, in the 

major textbooks on the evaluation of forensic 
evidence (e.g. Robertson & Vignaux 1995), and 

by forensic statisticians (e.g. Aitken & Stoney 

1991, Aitken & Taroni 2004), and is the standard 

framework in DNA comparison science. Emulat-

ing DNA forensic science, many fields of foren-

sic sciences, such as fingerprint (Neumann et al. 

2007), handwriting (Bozza et al. 2008), voice 

(Morrison 2009) and so on, started adopting the 
LR framework to quantify evidential strength (= 

LR).  

In order to calculate an LR, we need three sets 

of speech samples: a set of questioned samples 

(offender’s samples); a set of known samples 

(suspect’s samples); and the background or ref-

erence samples. This is because an LR is a ratio 

of similarity to typicality, which quantifies how 
similar/different the questioned and the known 

samples are, and then evaluates that similari-

ty/difference in terms of typicality/atypicality 

against the relevant background population (i.e. 

reference samples). Some investigations have 

been made on how factors such as the size and 

linguistic compatibility of the background popu-

lation data can influence LR-based FVC 
(Kinoshita & Norris 2010, Ishihara & Kinoshita 

2008, Kinoshita et al. 2009). Ishihara and Ki-
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noshita (2008), for example, investigated how 

many speakers are ideally required in the back-

ground population data in order to reliably eval-

uate speech evidence in FVC.  

However, to the best of our knowledge, stud-

ies focusing on the sample size of the offender 

and suspect data are conspicuously sparse. Need-

less to say, the sample size of the offender and 
suspect data – for example, the number of yes 

tokens we can use in order to build the offender’s 

and suspect’s models – has a great affect on the 

performance of FVC systems. 

Thus, this study investigated how the offender 

and suspect sample sizes (or within-speaker 

sample size) would influence the performance of 

an FVC system by employing Monte Carlo simu-
lations (Fishman 1995). In order to answer this 

question, two experiments: Experiments 1 and 2, 

were conducted. Detailed explanations of these 

two experiments are given §4.4. 

LRs were estimated using Aitken and Lucy’s 

(2004) MVLR formula (see §4.3). The derived 

LRs were calibrated using the logistic-regression 

calibration technique proposed by Brümmer and 

du Preez (2006) (see §4.5). The performance of 
the FVC system was assessed in terms of the log-

likelihood-ratio cost (Cllr) (Brümmer & du Preez 

2006) and the 95% credible interval (CI) 

(Morrison 2011b) (see §4.6). 

2 Likelihood Ratio 

The LR is the probability that the evidence 

would occur if an assertion is true, relative to the 

probability that the evidence would occur if the 
assertion is not true (Robertson & Vignaux 

1995).
 
Thus, the LR can be expressed as Equa-

tion 1).  

For FVC, it will be the probability of observ-
ing the difference (referred to as the evidence, E) 

between the offender’s and the suspect’s speech 

samples if they had come from the same speaker 

(Hp) (i.e. if the prosecution hypothesis is true) 

relative to the probability of observing the same 

evidence (E) if they had been produced by dif-

ferent speakers (Hd) (i.e. if the defence hypothe-

sis is true). The relative strength of the given ev-
idence with respect to the competing hypotheses 

(Hp vs. Hd) is reflected in the magnitude of the 

LR. The more the LR deviates from unity (LR = 

1; logLR = 0), the greater support for either the 

prosecution hypothesis (LR > 1; logLR > 0) or 

the defence hypothesis (LR < 1; logLR < 0).  

For example, an LR of 20 means that the evi-

dence (= the difference between the offender and 

suspect speech samples) is 20 times more likely 

to occur if the offender and the suspect had been 

the same individual than if they had been differ-

ent individuals. Note that an LR value of 20 does 
NOT mean that the offender and the suspect are 

20 times more likely to be the same person than 

different people, given the evidence. 

The important point is that the LR is con-

cerned with the probability of the evidence, giv-

en the hypothesis (either prosecution or defence), 

which is the province of forensic scientists, while 

the trier-of-fact is concerned with the probability 
of the hypothesis (either prosecution or defence), 

given the evidence. That is, the ultimate decision 

as to whether the suspect is guilty or not (e.g. the 

offender and suspect samples are from the same 

speaker or not) does not lie with the forensic ex-

pert, but with the court. The role of the forensic 

scientist is to estimate the strength of evidence (= 

LR) in order to assist the trier-of-fact to make a 

final decision (Morrison 2009: 229).  

3 Database, target segment, and speak-

ers 

In this study, we used the monologues from the 

Corpus of Spontaneous Japanese (CSJ) 

(Maekawa et al. 2000). There are two types of 

monologues in CSJ: Academic Presentation 

Speech (APS) and Simulated Public Speech 
(SPS). Both types were used in this study. APS 

was recorded live at academic presentations, 

most of them 12-25 minutes long. SPS contains 

10-12 minute mock speeches on everyday topics.  

For this study, we focused on the filler /e:/ and 

the /e:/ segment of the filler /e:to:/. Fillers are a 

sound or a word (e.g. um, you know, like in Eng-

lish) which is uttered by a speaker to signal that 
he/she is thinking or hesitating. We decided to 

use these fillers because 1) they are two of the 

most frequently used fillers (thus many mono-

logues contain at least ten of these fillers) 

(Ishihara 2010), 2) the vowel /e/ reportedly has 

the strongest speaker-discriminatory power out 

of the five Japanese vowels /a, i. u, e, o/ 

(Kinoshita 2001), and 3) the segment /e:/ is sig-
nificantly long so that it is easy to extract stable 

spectral features from this segment. It is also 

considered that fillers are uttered unconsciously 

by the speaker and carry no lexical meaning. 

They are thus not likely to be affected by the 
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pragmatic focus of the utterance. This is another 

reason we decided to focus on fillers in this 

study. 

For the experiments, we selected our speakers 

based on five criteria: 1) availability of two 

non-contemporaneous recordings per speaker, 2) 

high spontaneity of the speech (e.g. not reading), 

3) speaking entirely in standard modern Japa-
nese, 4) containing at least ten /e:/ segments, and 

5) availability of complete annotation of the data. 

Having real casework in mind, we selected only 

male speakers. This is because they are more 

likely to commit a crime than females 

(Kanazawa & Still 2000). These criteria resulted 

in 236 recordings (118 speakers x 2 

non-contemporaneous recordings), and they were 
used in our experiments. 

These 118 speakers (Dall) were divided into 

three mutually-exclusive sub databases; test da-

tabase (Dtest = 40 speakers), the background da-

tabase (Dbackground = 39 speakers) and the devel-

opment database (Ddevelopment = 39 speakers). Each 

speaker of these databases has two recordings 

which are non-contemporaneous. The first ten 

/e:/ segments were annotated in each recording. 
Thus, for example, there are 800 annotated /e:/ 

segments in the test database (= 40 speakers x 2 

sessions x 10 segments). The statistics which are 

necessary for conducting Monte Carlo simula-

tions were calculated from these databases. 

The test database was used to assess the per-

formance of the FVC system. The background 

database was for a background population, and 
the development database was for obtaining the 

logistic-regression weight, which was used to 

calibrate the LRs of the test database (refer to 

§4.5 for the detailed explanation of calibration). 

4 Experiments 

4.1 Features 

We used 16 Mel Frequency Cepstrum Coeffi-

cients (MFCC) in the experiments as feature vec-

tors. MFCC is a standard spectral feature which 
is used in many voice-related applications, in-

cluding automatic speaker recognition. All origi-

nal speech samples were downsampled to 

16KHz, and then MFCC values were extracted 

from the mid-duration-point of the target seg-

ment /e:/ with a 20 ms wide hamming window. 

No normalisation procedure (e.g. Cepstrum 

Mean Normalisation) was employed as all re-

cordings were made using the same equipment in 
CSJ.  

4.2 General experimental design 

There are two types of tests for FVC: one is the 

so-called Same Speaker Comparison (SS com-

parison) where two speech samples produced by 

the same speaker are expected to receive the de-

sired LR value given the same-origin, whereas 

the other is, mutatis mutandis, Different Speaker 

Comparison (DS comparison). 

For example, from the 40 speakers of the test 
database (Dtest), 40 SS comparisons and 1560 

independent (e.g. not-overlapping) DS compari-

sons are possible. 

4.3 Likelihood ratio calculation 

The LR of each comparison was estimated using 

the Multivariate Likelihood Ratio (MVLR) for-

mula, which is one of the standard formulae used 

in FVC (Ishihara & Kinoshita 2008, Rose 2006, 

Morrison & Kinoshita 2008, Rose et al. 2004). 

Although the reader needs to refer to Aitken and 

Lucy (2004) for the full mathematical exposition 

of the MVLR formula, this formula estimates a 
single LR from multiple variables (e.g. 16 

MFCC), discounting the correlation among them. 

The numerator of the MVLR formula calcu-

lates the likelihood (= probability) of evidence, 

which is the difference between the offender and 

suspect speech samples, when it is assumed that 

both of the samples have the same origin (or the 

prosecution hypothesis (Hp) is true). For that, 

you need the feature vectors of the offender and 
suspect samples and the within-group (= speaker) 

variance, which is given in the form of a vari-

ance/covariance matrix. The same feature vectors 

of the offender and suspect samples and the be-

tween-group (= speaker) variance are used in the 

denominator of the formula to estimate the like-

lihood of getting the same evidence when it is 

assumed that they have different origins (or the 
defence hypothesis (Hd) is true). These within-

group and between-group variances are estimat-

ed from the background dataset (Dbackground). The 

MVLR formula assumes normality for within-

group variance while it uses a kernel-density 

model for between-group variance. 

4.4 Repeated experiments using Monte 

Carlo simulations  

As explained earlier, each speaker has two sets 

of ten /e:/ segments, and 16 MFCC values were 

extracted. Thus, we can use a maximum of ten 

feature vectors to model each session of each 

speaker. In this study, we randomly generated X 
feature vectors (X = {2,4,6,8,10}) for each ses-
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sion of each speaker 300 times using the normal 

distribution function modelled with the mean 

vector () and variance/covariance matrix () 
obtained from the original databases ({Dtest, 

Dbackground, Ddevelopment}).  

Figure 1 is an example showing 300 randomly 

generated first two MFCC values (c1 and c2) 

from the normal distribution function based on 

the statistics ( and ) obtained from the first 
session of the first speaker in the test database. 

 

Figure 1: 300 randomly generated values (c1 and 

c2) from the statistics ( and ) obtained from 
the first session of the first speaker of the test 

database (only the first and second MFCC) and 

an ellipse. The cross = .  

Experiments were repeatedly conducted using 

randomly generated feature vectors, as explained 

above. Two experiments: Experiments 1 and 2 

were conducted in this study. In Experiment 1, 

we investigated how the token number (the num-

ber of feature vectors) of each speaker’s session 
affects the performance of the FVC system. In 

Experiment 1, the same token number 

({2,4,6,8,10}) was used across the test, back-

ground and development databases. 

In Experiment 2, Experiment 1 was repeated 

with different token numbers in the background 

database ({2,4,6,8,10}) with the token number of 

the test and development databases kept con-

stant. The aim of Experiment 2 was to investi-
gate how the number of tokens in the background 

database affects the performance of the FVC sys-

tem. 

4.5 Calibration 

A logistic-regression calibration (Brümmer & du 

Preez 2006) was applied to the derived LRs from 

the MVLR formula. Given two sets of LRs de-

rived from the SS and DS comparisons and a 

decision boundary, calibration is a normalisation 

procedure involving linear monotonic shifting 

and scaling of the LRs relative to the decision 

boundary so as to minimise a cost function. The 
FoCal toolkit

1
 was used for the logistic-

regression calibration in this study (Brümmer & 

du Preez 2006). The logistic-regression weight 

was obtained from the development database.  

4.6 Evaluation of performance: validity and 

reliability 

The performance of the FVC system was as-

sessed in terms of its validity (= accuracy) and 

reliability (= precision) using the log-likelihood-

ratio cost (Cllr) and the 95% credible intervals 

(CI) as the metrics of validity and reliability, re-

spectively.  
Suppose that you have speech samples col-

lected from two speakers at two different ses-

sions which are denoted as S1.1, S1.2, S2.1, and 

S2.2, where S = speaker, and 1 & 2 = the first 

and second sessions (S1.1 refers to the first ses-

sion recording collected from (S)peaker1, and 

S1.2 the second session from that same speaker). 

From these speech samples, two independent 

(not overlapping) DS comparisons are possible; 
S1.1 vs. S2.1 and S1.2 vs. S2.2. Further suppose 

that you conducted two separate FVC tests in the 

same way, but using two different features (Fea-

tures 1 and 2), and that you obtained the 

log10LRs given in Table 1 for these two DS com-

parisons. 

DS comparison Feature 1 Feature 2 

S1.1 vs. S2.1 -3.5 -2.1 

S1.2 vs. S2.2 -3.3 0.2 

Table 1: Example LRs used to explain the con-

cept of validity and reliability. 

Since the comparisons given in Table 1 are DS 

comparisons, the desired log10LR value would be 
lower than 0, and the greater the negative 

log10LR value is, the better the system is, as it 

more strongly supports the correct hypothesis. 

For Feature 1, both of the comparisons received 

log10LR < 0 while for Feature 2, only one of 

them got log10LR < 0. Feature 1 is better not only 

in that both log10LR values are smaller than 0 

                                                
1 https://sites.google.com/site/nikobrummer/focal 
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(supporting the correct hypothesis) but also in 

that they are further away from unity (log10LR = 

0) than the log10LR values of Feature 2. Thus, it 

can be said that the validity (= accuracy) of Fea-

ture 1 is higher than that of Feature 2. This is the 

basic concept of validity. 

Morrison (2011b: 93) argues that classifica-

tion-accuracy/classification-error rates, such as 
equal error rate (EER), are inappropriate for use 

within the LR framework because they implicitly 

refer to posterior probabilities – which is the 

province of the trier-of-fact – rather than LRs – 

which is the province of forensic scientists – and 

“they are based on a categorical threshholding, 

error versus non-error, rather than a gradient 

strength of evidence.” In this study, the log-
likelihood-ratio cost (Cllr), which is a gradient 

metric based on LR for assessing the validity of 

the system performance was used. See Equation 

2) for calculating Cllr (Brümmer & du Preez 

2006). In Equation 2), NHp and NHd are the num-

bers of SS and of DS comparisons, and LRi and 

LRj are the LRs derived from the SS and DS 

comparisons, respectively. If the system is pro-

ducing desired LRs, all the SS comparisons 
should produce LRs greater than 1, and the DS 

comparisons should produce LRs less than 1. In 

this approach, LRs which support counter-factual 

hypotheses are given a penalty. The size of this 

penalty is determined according to how signifi-

cantly the LRs deviate from the neutral point. 

That is, an LR supporting a counter-factual hy-

pothesis with greater strength will be penalised 

more heavily than the ones which are closer to 

unity, because they are more misleading. The 

FoCal toolkit
1
 was also used for calculating Cllr 

in this study (Brümmer & du Preez 2006). The 

lower the Cllr value is, the better the performance. 

 llr 
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Both of the DS comparisons given in Table 1 

are the comparisons between S1 and S2. Thus, 

you can expect that the LR values obtained for 

these two DS comparisons should be similar as 

they are comparing the same speakers. However, 

you can see that the log10LR values based on 
Feature 1 are closer to each other (-3.5 and -3.3) 

than those based on Feature 2 (-2.1 and 0.2). In 

other words, the reliability (= precision) of Fea-

ture 1 is higher than that of Feature 2. This is the 

basic concept of reliability. As a metric of relia-

bility, we used credible intervals, the Bayesian 

analogue of frequentist confidence intervals 

(Morrison 2011b). In this study, we calculated 
95% credible intervals (CI) in the parametric 

manner based on the deviation-from-mean values 

collected from all of the DS comparison pairs. 

For example, CI = 1.23 and log10LR = 2 means 

that it is 95% certain that it is at least log10LR = 

  

Figure 2: Tippett plot showing the uncalibrated (dashed curves) and calibrated (solid curves) LRs plot-

ted separately for the SS (black) and DS (grey) comparisons (a), and Tippett plot showing the calibrated 

LRs with 95% CI band (grey dotted lines) superimposed on the DS LRs (b). X-axis = log10LR; Y=axis 

= cumulative proportion. Cllr value was calculated from the calibrated LRs and CI value was calculated 

only for the calibrated DS LRs. 
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0.77 (= 2-1.23) and it is not greater than log10LR 

= 3.23 (= 2+1.23) for this particular comparison. 

The smaller the credible intervals, the better the 

reliability is. 

Before presenting the results of Experiments 1 

and 2, we conducted an experiment using the 

original databases (Dtest, Dbackground, Ddevelopment). 

The results of this experiment are given as Tip-
pett plots in Figure 2 with the Cllr and CI values. 

In these Tippett plots, the log10LRs, which are 

equal to or greater than the value indicated on the 

X-axis, are cumulatively plotted, separately for 

the SS and DS comparisons. Tippett plots graph-

ically show how strongly the derived LRs not 

only support the correct hypothesis but also mis-

leadingly support the contrary-to-fact hypothesis. 
In Figure 2a, calibrated and uncalibrated LRs are 

plotted together in order to show what sorts of 

effect the logistic-regression calibration brings to 

the uncalibrated LRs, and in Figure 2b, the cali-

brated LRs are plotted together with CI band on 
the DS LRs. 

Theoretically speaking, the crossing point of 

the SS and DS LRs should be on log10LR = 0, 

but you can see the crossing point of the uncali-

brated SS and DS LRs are far away from it in 

Figure 2b. In this circumstance, it is difficult to 

interpret the given LR appropriately as the theo-
retical threshold (log10LR = 0) and the obtained 

threshold (log10LR = ca. -7 in the uncalibrated 

LRs of Figure 2b) are completely different. A 

calibration technique needs to be applied in this 

situation. Please note that the calibrated SS and 

DS LRs given in Figure 2 are very well calibrat-

ed. The Cllr value was calculated using these cal-

ibrated SS and DS LRs, and it was 0.396. The CI 

was calculated based on calibrated DS LRs, and 

it was 4.026. 

5 Experimental Results and Discussions 

The results of Experiment 1 are graphically pre-

sented in Figure 3 in terms of Cllr and CI. In Fig-

ure 3a, the Cllr and CI values obtained from the 

Monte Carlo simulations (repeated 300 times) 

are plotted altogether with their mean values for 

each of the five different token numbers 

({2,4,6,8,10}). The numerical values for the 

mean values are given in Table 2 together with 

their standard deviation (sd) values. Please note 
that the same token number was used across the 

test, background and development databases (test 

= background = development = {2,4,6,8,10}) in 

Experiment 1.  

What we can observe from Figure 3a and Ta-

ble 2 is that the validity of the system (Cllr) im-

proves as the token number increases whereas 

the reliability of the system (CI) deteriorates. 
That is, there is a trade-off between the validity 

and reliability of the system. The improvement in 

validity as a function of the token number is non-

linear in that there is a large improvement from 

the token number = {2} to {4} (0.66->0.51) 

  

Figure 3: The Cllr and CI values of the 300 repeated Monte Carlo simulations are plotted separately for 

the different token numbers {2,4,6,8,10} with their mean values (large filled circles) (a). The mean C llr 

and CI values of the 300 repeated Monte Carlo simulations (big empty circles) differing in the token 

numbers ({2,4,6,8,10}) of the background database (b). X-axis = Cllr; Y-axis = CI; test, back and dev = 

test, background and development databases.  
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whereas there is not much improvement between 

the token number = {6} and the token number = 

{10} (0.45->0.44->0.43). That is, if you have six 

repeated tokens (e.g. six yes tokens for each ses-

sion of each speaker) in the databases, the per-

formance of the system can be expected to be as 

good as when you have as many as ten repeated 

tokens. 

Another observation that can be made is that 

the Cllr and CI values are more widely scattered 

when the token number is {6,8,10} than {2,4}. 
This point can be seen in the sd values given in 

Table 2 in that, for example, the sd values of the 

Cllr and CI are far smaller when the token num-

ber is {2} (0.073 and 0.427, respectively) than 

when the token number is {10} (0.090 and 0.700, 

respectively). That is, the performance of the 

system widely fluctuates when the token number 

is high (e.g. {6,8,10}). 
In Experiment 2, Experiment 1 was repeated 

five times with the five different token numbers 

({2,4,6,8,10}) in the background database. The 

results of Experiment 2 are given in Figure 3b in 

which only the mean Cllr and CI values are plot-

ted in order to prevent the figure from becoming 

too crowded. The numerical values of Figure 3b 

are given in Table 3. For example, the experi-
ment with the token number of {10} in the test 

and development databases was repeated five 

times, differing the token number in the back-

ground database (background = {2,4,6,8,10}), 

and then the mean Cllr and CI values of these five 

experiments are plotted in the same colour (gold 

for the token number of {10} in the test and de-

velopment databases) in Figure 3b.  

We can observe from Figure 3b and Table 3 
that each experimental set (e.g. test = develop-

ment = 8, background = {2,4,6,8,10}) has one 

result which is very different in performance 

from the other four results. For example, the re-

sults of the token number of {10} in the test and 

development databases with the token numbers 

of {4,6,8,10} in the background database are 

more or less the same (Cllr = ca. 0.44 and CI = ca. 
3.3) whereas they are significantly better in terms 

of Cllr than the result with the token number of 

{2} in the background database (= 0.77). In fact, 

regardless of the token number in the test and 

development databases, the performance of the 

system is worse when there are only two repeat-

ed tokens in the background database than when 

there are four or more repeated tokens 

({4,6,8,10}) (refer to the arrows given in Figure 
3b).  

test = dev = back = Cllr CI 

2 

2 0.66 1.65 

4 0.62 1.77 

6 0.61 1.82 

8 0.61 1.84 

10 0.61 1.84 

4 

2 0.57 2.13 

4 0.51 2.46 

6 0.50 2.50 

8 0.49 2.52 

10 0.49 2.49 

6 

2 0.63 1.91 

4 0.46 2.82 

6 0.45 2.87 

8 0.45 2.88 

10 0.45 2.91 

8 

2 0.75 1.51 

4 0.45 3.08 

6 0.44 3.10 

8 0.44 3.14 

10 0.44 3.14 

10 

2 0.77 1.39 

4 0.45 3.28 

6 0.44 3.33 

8 0.43 3.36 

10 0.43 3.33 

Table 3: The numerical values of Figure 3b. 

Furthermore, this difference in performance 

between the token numbers of {4,6,8,10} and 

that of {2} in the background database becomes 
greater as the number of tokens used in the test 

and development databases increases. For exam-

ple, as can be seen in Table 3, the difference in 

question is relatively small for the test and de-

velopment databases = {2} (Cllr = 0.66 and CI = 

1.65 for the background = {2}; average Cllr = 

0.61 and average CI = 1.81 for the background = 

{4,6,8,10}) whereas it is far larger for the test 
and development databases = {10} (Cllr = 0.77 

and CI = 1.39 for the background = {2}; average 

Cllr = 0.43 and average CI = 3.32 for the back-

ground = {4,6,8,10}). 

 test = background = development = 

 2 4 6 8 10 

Cllr 0.66 0.51 0.45 0.44 0.43 

sd 0.073 0.087 0.091 0.093 0.090 

CI 1.65 2.46 2.87 3.14 3.33 

sd 0.427 0.629 0.711 0.734 0.700 

Table 2: The numerical values of Figure 3a (only 

mean values). 
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As far as the Cllr values are concerned, the per-

formance never deteriorates as the size increases 

from the background = {4} to {10}. Whereas 

there are some very small fluctuations in perfor-

mance in terms of the CI values from the back-

ground = {4} to {10}. The reasons for these fluc-

tuations are not clear at this stage. 

The results of Experiment 2 tell us that, if you 
have four repeated tokens (e.g. four yes tokens 

for each session of each speaker) in the back-

ground database, the system can achieve as good 

a performance as when you have ten repeated 

tokens. However, if you have only two repeated 

tokens in the background database, it will result 

in an underperformance of the system in compar-

ison to when you have four or more repeated to-
kens. 

6 Conclusions and Future Directions 

This study investigated how the offender and 

suspect sample sizes (or the within-speaker sam-

ple size) influences the performance of an FVC 

system. In order to answer this question, two ex-

periments based on Monte Carlo simulations: 

Experiments 1 and 2, were conducted.  

In Experiment 1, five different token numbers 
({2,4,6,8,10}) were used in the databases to see 

how the performance of the system would be 

influenced by the token number. The results 

demonstrated that 1) there was a trade-off be-

tween the validity (Cllr) and reliability (CI) of the 

system; 2) there was a large improvement in the 

validity between the token number = {2} and the 

token number = {4} whereas no large improve-
ment was observed from the token number = {6} 

to the token number = {10}. That is, if we have 

six repetitions of the target segment/word (e.g. 

yes), the system validity is almost as good as 

when we have ten repetitions. 

In Experiment 2, Experiment 1 was repeated 

by changing the token number ({2,4,6,8,10}) of 

the background database while keeping the same 

token number for the test and development data-
bases. The results of Experiment 2 demonstrated 

that regardless of the token number in the test 

and development databases, the system with the 

token number = {2} in the background database 

significantly underperformed in accuracy when 

compared to the systems with the token number 

= {4,6,8,10}, of which the performances were 

very similar. The results of Experiment 2 also 
demonstrated that the above-mentioned discrep-

ancy in performance between two repeated to-

kens ({2}) and four or more repeated tokens 

({4,6,8,10}) becomes wider as the token number 

of the test and development databases increases. 

These results suggest that when we compile a 

database which can be used as background popu-

lation data, we do not need many repetitions in 

the database as a model based on four repeated 

tokens can achieve very similar results as one 

based on ten repeated tokens. However, if we 
have only two repeated tokens in the background 

database, we need to be aware that the perfor-

mance will be compromised, even if you have 

many repetitions in the test and development da-

tabases. 

In this study, we mainly focused on the token 

numbers of the test and background databases. 

However, it goes without saying that the token 
number of the development database is also im-

portant to the performance of a system. We need 

to look into this point as well. 

In this study, although some other techniques 

are available for the estimate of LRs, the MVLR 

formula was used. For example, Morrison 

(2011a) reported that the procedures based on the 

Gaussian Mixture Model – Universal Back-

ground Model (GMM-UBM) outperformed those 
based on MVLR procedures, and that the GMM-

UBM resulted in an improvement in both the 

validity and reliability (without trade-offs be-

tween them). Since the GMM-UBM is another 

popular way of estimating LRs in FVC, it is im-

portant to investigate the relationship between its 

performance and the sample size as well. 
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