ENGAGE: Automated Gestures for Animated Characters

Marcin Nowina-Krowicki, Andrew Zschorn, Michael Pilling and Steven Wark
Command, Control, Communications and Intelligence Division,
Defence Science and Technology Organisation,
Edinburgh, South Australia

{firstname.lastname}@dsto.defence.gov.au

Abstract

There is a rapidly growing body of work
in the use of Embodied Conversational
Agents (ECA) to convey complex con-
textual relationships through verbal and
non-verbal communication, in domains
ranging from military C2 to e-learning. In
these applications the subject matter ex-
pert is often naive to the technical re-
quirements of ECAs. ENGAGE (the Ex-
tensible Natural Gesture Animation Gen-
eration Engine) is designed to automati-
cally generate appropriate and ‘realistic’
animation for ECAs based on the content
provided to them. It employs syntactic
analysis of the surface text and uses pre-
defined behaviour models to generate ap-
propriate behaviours for the ECA. We
discuss the design of this system, its cur-
rent applications and plans for its future
development.

1 Introduction

The Defence Science and Technology Organisa-
tion has an active research program into the use
of multimedia narrative to provide situational
awareness for military C2 (Wark and Lambert
2007). In common usage, face-to-face communi-
cation is the predominant, and often most effec-
tive, way for people to give and obtain complex
contextual information. Embodied Conversa-
tional Agents (ECA) provide verbal and non-
verbal communication modes similar to face-to-
face communication. Gestures such as nods and
facial expressions are very important in listener
engagement with the speaker and their message.
Programming these gestures into an ECA ani-
mation is time consuming and requires special-
ised expertise. The subject matter experts devel-

Figure 1 — Virtual Advisers present photo-realistic
models of people

oping content for ECAs are often naive with re-
spect to these technical requirements. A system
to automatically generate appropriate non-verbal
behaviour allows the content creator to concen-
trate on the information and not on how the ECA
will animate it.

The BEAT system from MIT (Cassell et al.
2001) demonstrated this capability. DSTO has
developed ENGAGE (Extensible Natural Ges-
ture Animation Generation Engine) based on the
principles demonstrated in BEAT, and extended
them to incorporate modifiers such as confi-
dence, importance, and urgency.

1.1 Virtual Adviser

DSTO has been using ECAs dubbed Virtual Ad-
visers (VAs) as a mechanism for augmenting
situational awareness in military C2 (Taplin et al.
2001; Wark and Lambert 2007; Wark et al.
2009). Virtual Advisers are computer generated
talking heads using photo realistic textures with
real-time animation and commercial-off-the-shelf
text-to-speech (TTS) generation. Virtual Advis-
ers can also include rolling text captions and
multimedia monitors a la television news ser-

Marcin Nowina-Krowicki, Andrew Zschorn, Michael Pilling and Steven Wark. 2011. ENGAGE: Automated
Gestures for Animated Characters. In Proceedings of Australasian Language Technology Association

Workshop, pages 166—174

vices. Virtual Advisers have been designed for
modularity and can be delivered to users in a
number of ways.

VAs are used to present situation briefs incor-
porating other media such as tables and dia-
grams, images, video, 3D models and so on.
They are being used to provide prepared presen-
tations, or dynamically generated content incor-
porating a dialog management system with a
conversational interface (Estival et al. 2003).
When connected to a decision support system
they can also alert people to new or changing
situations (Lambert 1999; Wark et al. 2003).

Virtual Advisers augment human support staff
by providing a capability that can be deployed
and accessed simultaneously from multiple geo-
graphically distributed locations. They can pre-
sent the same information numerous times, on
demand, without imposing an additional staffing
burden. Virtual Advisers can augment existing
decision support systems by explaining the in-
formation produced, not just showing it.

1.2 Talking Head Markup Language

Content is provided to VAs in the form of Talk-
ing Head Markup Language (THML). THML is
tagged text that describes what the VA is to say
and do. It includes commands to direct the VA:
to say text; to adopt degrees of fundamental fa-
cial expressions (happy, sad, angry, afraid, sur-
prised, contempt, disgust) (Ekman and Friesen
1977); to make eyebrow and head movements;
and to direct gaze. It also includes commands to
control the underlying TTS system, the appear-
ance of the VA and its environment, and syn-
chronise with other applications.

THML is designed to be simple for humans to
read and write and to support on-the-fly author-
ship.

2 VA Architecture

Virtual Advisers are implemented using a modu-
lar, distributed architecture. All components
communicate using a client-server model. The
system consists of three core components; a ren-
dering engine, system controller (THConsole),
and Text-to-Speech service. Automated behav-
iour generation can be provided by ENGAGE.
The content to be delivered by the VA can either
be authored by a user or by a dynamic content
generation system that feeds the THConsole the
THML to be presented on demand.

167

0SG OpenGL Java
Rendering Rendering Rendering
Engine Engine Engine
audio files
animatiar
THML |
personality ENGAGE |*—— THConsole " TTS
models service W - service
= visemes
emotion/affect behaviour audio
modelling modelling THML] tintings

Figure 2 — The Virtual Adviser system

2.1 Rendering Engines

Rendering Engines are used to display the VA.
They receive low-bandwidth rendering and tim-
ing instructions from the THConsole and output
correctly synchronised 3D graphics, video, audio
and application control.

C++ and Java toolkits have been developed to
provide reusable, cross platform, core compo-
nents to help facilitate the rapid development of
new Rendering Engines for novel delivery medi-
ums. These toolkits provide common underlying
functionality such as: character animation; plug-
gable audio; instruction parsing; event based
timeline; and networking support. The character
animation system is built on top of the Cal3D
library (Cal3D Team 2011). It provides skeletal
and morph target character animation and a flexi-
ble model loading system. The Java Abstract
Gaming Tools library (JAGaToo 2011) provides
a port of the Cal3D library from C++ and is used
in our Java toolkit.

Rendering Engines are developed by extend-
ing the core toolkits and providing environment
specific support, such as accelerated 3D graphics
and any other capabilities appropriate for the tar-
get medium.

Currently, VAs can be delivered in one of
three ways: as a Desktop Application that can be
controlled via an integrated Desktop service or
invoked independently; embedded as an overlay
or 3D model inside other applications such as
DSTO’s Virtual Battlespace II geospatial display
(Wark et al. 2009); and as an Applet displayed
on web pages and integrated into mainstream
wiki systems, such as Atlassian’s Confluence and
the ubiquitous, open source, MediaWiki.

Desktop and embedded delivery is facilitated
by a Rendering Engine built with the high per-
formance = OpenSceneGraph 3D library

Browser

Presentation
Converter

Presentation
Repository

AJAX
Presentation
Service

VA2 Web
Application

VA2
Server

¢y

ENGAGE

A\ 4

TTS

Service Service

Figure 3 — Virtual Advisers can be embedded on web pages to give dynamic presentations

(OSG Community 2011). Highlights of this solu-
tion include: integrated video and multimedia
display; tickertape captioning; stereoscopic view-
ing; and Render-to-Texture support. The Render-
to-Texture support allows the Virtual Adviser to
be rendered as an overlay or texture in other ap-
plications.

Web delivery is via a Java-based Applet using
the Java OpenGL (JOGL) bindings. The Applet
works on all major platforms and web browsers
that support the Java plug-in. Wiki integration
for Confluence and MediaWiki allow users to
easily embed and control a Virtual Adviser on a
wiki page. A system for automatically presenting
a converted PowerPoint presentation on a web or
wiki page has also been developed and demon-
strated.

2.2 THConsole

The Talking Head Console (THConsole) acts as
the system controller. It interprets THML pro-
vided to it by a content generation system or user
and coordinates the use of ENGAGE and the
TTS service to produce the necessary animation
instructions, synthesised audio and timing infor-
mation, which is used by Rendering Engines to
display VAs. Where ENGAGE is unavailable,
the THConsole will process the script as is using
only the marked up behaviour in the input
THML.

The THConsole provides a flexible deploy-
ment capability. It is written as a small Java li-
brary that can be run in a number of different
ways including: as an interactive CLI application
that can have data either typed directly into it or
piped from other processes or files; a TCP server
that can be controlled via remote clients; or em-

168

bedded as a component inside other applications
and controlled using its public API.

How THML is handled depends on its context.
Where commands are not inside an utterance, the
THConsole can process them directly and send
them to the Rendering Engine for immediate dis-
play. In contrast, utterances and the commands
nested inside utterances are handled using a three
pass process that requires the use of external ser-
vices. The first pass optimises the input by
chunking the say statement at sentence bounda-
ries. The advantage of chunked input is that it
greatly improves the throughput of both EN-
GAGE and the TTS and provides concurrency by
allowing the Rendering Engine to begin execut-
ing one sentence while subsequent sentences are
still being processed by the THConsole. The sec-
ond pass expands the script using ENGAGE, if
the service is available, to automatically generate
behaviour. The final pass calls on the TTS ser-
vice to generate synthesized audio and timing
information for all events in utterance. The TTS
results are then processed by the THConsole with
timing information applied to all behaviour and
actions in the utterance. Finally, rendering in-
structions are sent to the Rendering Engine for
display.

2.3 Text-to-Speech Service

The Text-to-Speech service provides synthe-
sized audio and timing information to enable
synchronization of audio with animation and
other events. In addition the service provides the
ability to change the current voice, alter the
speech rate and control volume. A TCP client-
server architecture is used for service control.
Generated files are served using a HTTP server

to allowing a pull model where clients retrieve
the audio and timing information as they need
them.

Currently the TTS service uses Nuance’s Re-
alSpeak Solo 4 TTS engine (Nuance 2011).
Other systems that have been used include Rhe-
torical System’s rVoice TTS and the open source
Festival Speech Synthesis System.

3 ENGAGE System

ENGAGE uses syntactic analysis of THML and
behaviour models to generate appropriate syn-
chronised behaviour. Parameters that control the
application of these behaviour models can be
embedded in the input speech instructions.

There are five main components in the EN-
GAGE system. Four of these components are
arranged in a strict processing chain. The input
stream is first sent to the Pre-processor, which
prepares the input’s speech instructions for syn-
tax analysis. The Language component then adds
syntax analysis to the speech parts of the input.
The Behaviour component generates appropriate
behaviours. Finally the post-processor produces
mark-up for the virtual character system consist-
ing of speech and synchronised behaviour. The
fifth component of the system, the Behaviour
Models, are used in both the language and behav-
iour components of the system to produce behav-
iour that is tailored to the current personality pro-
file in use and model parameters provided in the
input.

Extensible
Natural
Gesture

Personality

Following Cassell et al. (2001) and Lee and
Marsella (2006), we use an XML document to
store the processing results of each stage in the
pipeline process. Each processing node is im-
plemented as XSL transforms that can modify
and augment the XML document. This pipeline
approach ensures the separation of gesture gen-
eration from gesture realisation. This means that
different behaviour models can be easily plugged
in to achieve different behaviours in the VAs.
The following sections examine each component
in detail.

3.1 Pre-processor

The pre-processor prepares the THML input for
processing. It takes as input a character stream of
speech and other instructions and produces as
output an XML tree ready for language syntax
analysis. In the current implementation the Pre-
processor uses a three stage process where input
is first tokenised, then filtered and finally serial-
ised to XML.

3.1.1 Tokeniser

The tokeniser is responsible for separating and
extracting the various components of the input
ready for filtering and serialisation to XML. It
takes the character stream as input and produces
an ordered list of “word” and “tag” tokens as
output. The “word” tokens represent the dialogue
that is to be spoken by the animated character,
while the “tag” tokens represent all other instruc-
tions in the input stream, usually THML tags or

Profiles

v

Animation
Generation

Behaviour Models

Abbreviation
Pronunciation
Management

Engine Stanford

Parser

Confidence

Importance

Urgency

System

:
i

‘.:

Tagged
Input
(THML)

Pre-processor

Behaviour Tagged
OQutput

(THML)

Figure 4 — The ENGAGE system.

169

ENGAGE processing instructions. The ordered
list of tokens is then returned ready for filtering.

3.1.2 Filters

The filtering stage of the Pre-processor examines
the input tokens and performs any additional
processing on them ready for XML serialisation
and processing. The filter set currently consists
of an acronym and abbreviation filter and an
ENGAGE tag filter for marking specific “tag”
tokens as processing instructions for ENGAGE.

The acronym and abbreviation filter uses a
context sensitive Abbreviation Pronunciation
Management System (APMS) to expand any ac-
ronyms and abbreviated words. This allows cor-
rect phrase structure analysis in the language
module and provides the Text-to-speech system
with contextually correct phonetic spellings to
facilitate correct pronunciation of the abbrevia-
tions.

3.1.3 Abbreviation Pronunciation Manage-
ment System (APMS)

The correct pronunciation of some words, par-
ticularly abbreviations, can be difficult to deter-
mine from their written form with pronunciations
often varying depending on the context in which
they appear. Text-to-speech engines can do a
very good job of inferring correct pronunciation
of written forms, including initialisms and acro-
nyms, but are not perfect, and don’t have mecha-
nisms to distinguish how different contexts can
change pronunciations.

Large numbers of abbreviations are used in the
defence domain, both in written forms such as
reports, and in the spoken language. To always
replace written forms with pronunciation forms
directly in THML scripts would be tedious, and it
would make the script harder for a reader to un-
derstand. Also, in the future we expect that
THML scripts will be automatically generated
from text that was never intended to be spoken
by a VA. We want to make the process of author-
ing THML scripts simple and natural, to aid both
authors and future automation. Thus, we want to
move the problem of deciding how to pronounce
abbreviations to the Virtual Adviser and away
from the author.

We have developed the Abbreviation Pronun-
ciation Management System (APMS) to replace
written abbreviations with pronunciation spell-
ings in a context-sensitive way in ENGAGE.

Consider the written abbreviation “RAAF”,
which can be pronounced as “R double-A F”,
“raff”, or “Royal Australian Air Force”. The pro-

170

nunciation chosen can have a significant effect
on comprehensibility of the speaker’s message.
For instance, it could be confusing to use the
pronunciation “raff” when talking of a coalition
military operation. On the other hand, using the
longest form, “Royal Australian Air Force”,
could distract from the content of the message
and socially separate a speaker from their audi-
ence if the context were an Australian military
operation, where “raff” is the most common pro-
nunciation.

In the APMS we use string tokens to identify contexts
of abbreviation pronunciation. We allow contexts to
inherit pronunciation replacements from a single par-
ent, forming a branching hierarchy of contexts, or
ontology. Child contexts may include different pro-
nunciation replacements than its ancestors. This en-
ables the addition of more specific contexts to handle
more specific pronunciation replacements, while in-
heriting more general pronunciation replacements. For
example, the context “general.australia.gov” may in-
clude the pronunciation replacement RAAF = “R
double-A F”, while the context “gen-
eral.australia.gov.mil” may include the pronunciation
replacement RAAF = “raff”.

Database: The APMS database provides the
persistent store of translations between text in-
puts and more vocally accurate textual or pho-
netic spellings. Each of these translations is
given for a particular context. If no translation
can be found in the given most specific context,
progressively more general contexts are searched
until a translation is found. For instance, the
search may progress from “ship” to “Navy” to
“military” contexts.

The system is implemented using PostgreSQL
because of the richness of its stored procedure
language and integral support for recursion for
hierarchical data. This allows recursive searches
to occur entirely within the database, avoiding
returning intermediate results and executing re-
cursion from the client which could be prohibi-
tively expensive. Pronunciation lookup is done
entirely server side. In normal operation, the sys-
tem is further optimised by pre-calculating the
best answer between voice, accent and context
for any defined word and storing these answers
in a cache. This noticeably enhances speed at the
acceptable expense of higher disk usage.

As pronunciations necessarily drift and evolve,
a script that had been rendered correctly may
degrade as the underlying database evolves. The
database records the times that pronunciations
are added and when a pronunciation is revised
the old version is retained. To access prior pro-
nunciations, the caller need only specify a refer-

ence time and the database provides the pronun-
ciation as it was then. For efficiency the system
allows each caller their own cache which pre-
calculates pronunciations for the caller’s pre-
ferred reference time. It also provides a table in
which to record such reference times, along with
a short name and comment. This schema has the
advantage of archiving all “snapshots” of the da-
tabase online at very low storage cost, with only
the snapshots in current use being instantiated
out into the cache.

Usage: To use the APMS, THML scripts are
marked-up to identify the context ontology it is
to use. Scripts are then marked-up throughout to
identify the current context for abbreviation re-
placement. As scripts are processed by EN-
GAGE, each space-separated word within
‘<say>’ tags is analysed, given the current ab-
breviation context, to see if it should be replaced
by a pronunciation spelling.

3.1.4 XML Generator

The XML Generator concludes the pre-
processing stage by producing an XML tree from
the tokenised and filtered input ready for Lan-
guage and behaviour processing. The filtered
“word” and “tag” tokens are marked up as XML
elements in the pre-processed XML tree. Any
“tag” tokens that have been marked as processing
instructions for ENGAGE (such as behaviour
models and parameters) are expanded and added
as either attributes or elements depending on the
scope of their behaviour.

3.2 Behaviour Models

Behaviour models are used to control and tailor
the language and behaviour produced by EN-
GAGE. In this first version of the system, behav-
iour can be controlled using a Confidence Engine
to manage the level of uncertainty displayed by
the character. It is envisaged that future incarna-
tions of the system will feature Behaviour Mod-
els for controlling the level of importance and
urgency in the information being presented.

3.2.1 Personality and Personality Profiles

The Personality component provides the system
with a means of varying language and behaviour
parameters for the Behaviour model based on
different Personality profiles.

Each Personality profile represents a set of
language and behaviour parameters that can be
used to alter the output of the various Behaviour
Models. A Personality profile can inherit pa-
rameters from other personality models. This

171

allows common traits to be pushed up to a com-
mon ancestor personality profile. In the first cut
of the system this is achieved through cascading,
where parameters are overridden by each succes-
sive include and can be further specialised in the
child personality profile. In future a more power-
ful inheritance model will be implemented that
allows groups or individual parameters to be in-
cluded from specified parent profiles.

A User Interface has been developed to help
generate personality profiles and tweak output
behaviour. This interface provides the user with a
set of parameter sliders that allow the various
Behaviour Model parameters to be modified ei-
ther individually or as grouped sets. The results
of these changes can be tested and tweaked in
real time allowing the user to see the results im-
mediately.

3.2.2 Confidence

The Confidence Engine allows the system to
control the level of uncertainty displayed by the
character based on a confidence measure and
parametric personality profile that can be as-
signed to the input utterance. Personality profiles
are used to provide the Confidence module its
parameters and allow the behaviour to be tailored
for different personality types.

Currently the Confidence Behaviour Model is
used in the Language Modification and Behav-
iour Generation phases of ENGAGE processing;
how the Confidence Engine is applied will be
discussed further in their Langauge Modification
and Behaviour sections.

3.3 Language

Our primary intent is to generate natural-looking
gestures to accompany the VAs speech. There-
fore, and following Cassel (2000), Cassel et al.
(2001) and Lee and Marsella (2006), syntactic
analysis of the text to be spoken is important for
behaviour generation and realisation. The text to
be spoken is found within ‘<say>’ tags in the
THML scripts that drive the VA.

3.3.1 Phrase Structure Analysis

Each sentence found in THML ‘<say>’ tags are
sent to an automatic English parser for a full
phrase structure analysis. At present we use the
Stanford Parser to perform this function
(The Stanford NLP Group 2011). The Stanford
Parser uses a statistical method to perform phrase
structure analysis. The tag set used is from the
Penn treebank.

Syntactic and POS attributes are assigned as
attributes to the individual word elements in the
XML tree. These attributes can then be used in
later processing stages such as contextual
markup, language modification and behaviour
generation.

3.3.2 Contextual Mark-up

Hiyakumoto et al. (1997) and Cassell et al (2001)
use automatic theme/rheme analysis to aid be-
haviour generation, as it is stated that gestures
are more frequently found in the rheme, or com-
ment, part of the sentences (Cassell 2000). In
order to perform automatic theme/rheme analysis
these systems keep a record of all terms men-
tioned, and, broadly, determine that re-
occurrences of those terms or closely related
terms constitute the theme, or topic, of the
clause.

At this stage the ENGAGE system does not
maintain a history of words previously spoken by
virtual characters. It is possible to add such a ca-
pability, and once done this will provide the sys-
tem with a context-based approach for identify-
ing the theme and rheme. Currently, for most
suitable parses we simply identify all those
words up to and including the head verb of the
top-level phrase as forming the theme, and the
remainder forms the rheme. Where the parser
output is unrecognized, all the words up to and
including the first verb in the sentence is labelled
as the theme, and the remainder labelled as the
rheme.

3.3.3 Language Modification

Language Modification is performed by applying
the Behaviour Models to the language tree.

The Confidence Engine can insert disfluencies
(as interjections), hesitations and information to
alter speech rate into the XML language tree.
The Confidence Engine uses the current confi-
dence value assigned to the utterance and per-
sonality profile to determine if disfluencies and
hesitations are added at various points in the ut-
terance. Currently, disfluencies and hesitations
may be added at any of the following locations:
the start of the utterance
before prepositions
before verbs
before nouns
before the introduction of new domain words

Speech rate changes are added at both an ut-
terance level and around inserted disfluencies.

172

34

The Behaviour phase of ENGAGE processing
seeks to assign contextually appropriate non-
verbal behaviours and expressions to the XML
processing tree based on the markup added dur-
ing the Language phase. As ENGAGE develop-
ment is driven by the needs of the VA system,
the current library of behaviours covers head ges-
tures, facial gestures and facial expressions.
Other gestures such as arm and body motion are
envisioned for future development iterations of
the system.

To generate behaviour ENGAGE runs the
XML processing tree through a number of Be-
haviour Generators and the Behaviour Models.
The XML tree is then pruned and passed to the
Post-processing stage.

Behaviour

3.4.1 Head Gestures

For characters to emphasise objects and ac-
tions that they are introducing to the context,
head-nods are generated for nouns and verbs in
rheme sections of their speech.

The Confidence Behaviour Model can also
add head drops and tilts to control the level of
uncertainty displayed by the character, depend-
ing on the current confidence value and personal-
ity model in use.

Head drops are generated at changes in confi-
dence value and influence the amplitude of head
nods generated.

Head tilts may be added where there are hesi-
tations with no disfluency in the speech.

3.4.2 Facial Gestures

For characters to emphasise objects and actions
that they are introducing to the context, eyebrow
movements are generated for nouns and verbs in
rheme sections of their speech.

Also, in accordance with the way English and
some other language speakers behave, eyebrow
movements are added to sentences that end with
a question-mark or exclamation-mark.

The Confidence Engine may specify changes
in the rate and duration of blinks, as well as in-
sert frowns and cheek puffs into the output tree.
Cheek puffs and changes to blink rate and dura-
tion may be added to hesitations where there is
no disfluency, while frowns may be added during
disfluencies.

3.4.3 Facial Expressions

The Confidence Engine may specify changes in
the level of anxiety, a combination of both anger

and fear, displayed by the character. Anxiety
may be changed whenever the confidence value
changes.

3.4.4 Filter

The final stage of behaviour processing generates
a filtered animation tree representing just the in-
formation that should be marked up in the post
processing stage. The filtered tree produced con-
sists of just words, tags and behaviours, with all
extra language and intermediate processing tags
pruned from the XML tree.

3.5

The Post-processor takes the filtered XML tree
generated by the Language and Behaviour mod-
ules and generates a character stream of process-
ing instructions for the VA. In our current im-
plementation a THML Generator is used to pro-
duce the final ENGAGE output.

Post-processor

3.5.1 THML Generator

The THML Generator takes the resulting filtered
XML tree generated by the Behaviour module as
input and generates a character stream of syn-
chronised THML instructions as output.

The output THML stream includes the speech,
behaviour and other tags to be processed by the
THConsole to generate appropriate instructions
for the Virtual Adviser Rendering Engine.

In the current architecture ENGAGE does not
use the TTS system to provide timing informa-
tion for any of the marked-up behaviour that it
produces. Instead, all behaviour is marked rela-
tive to the start or end of word, context or utter-
ance boundaries. Appropriate timing information
will be applied in the TTS processing pass coor-
dinated by the THConsole. This approach allows
ENGAGE to be an optional component of the
system and also allows the THConsole to do fur-
ther processing before generating timing infor-
mation from the TTS without adding an unneces-
sary second TTS pass.

3.6 Responsiveness

As one of the usage modes of VAs is as a con-
versational interface, the speed at which it can
produce results is important. ENGAGE is gener-
ally quicker to respond than TTS engines, so its
impact on the overall system response time is
negligible.

173

4 Future Work

Future work will look at semantic analysis of
surface text to provide more targeted, contextu-
ally appropriate gestural animation.

The behaviour models currently used with
ENGAGE have been developed as a proof of
concept only. Further work is needed to refine
these behaviour models to effectively communi-
cate aspects such as uncertainty, importance, and
urgency.

We also plan on investigating other Text-to-
Speech solutions to provide finer control of pros-
ody and expressive delivery of content to com-
plement the animation.

5

The ENGAGE system developed at DSTO can
be used to augment the real-time animation of
ECAs by automatically inserting gesture anima-
tion based on the syntax of the sentences given to
the system. This simplifies the task of generating
‘realistic’ behaviours based on surface text alone,
supporting content authoring without requiring
expertise in human behavioural modelling. In
most cases observed so far, this has improved
user engagement with the ECAs.

Conclusions

Acknowledgments

We wish to thank all the people that have con-
tributed to the development of the Virtual Ad-
viser system over the years. We would also like
to thank the Research Leader C2 and Chief C31D
for their support and leadership.

References

Cal3D Team. (2011). Cal3D - 3D Character
Animation Library,
https://gna.org/projects/cal3d/

Cassell, J. (2000). "Nudge nudge wink wink: elements
of face-to-face conversation for embodied
conversational agents", Embodied
conversational agents. MIT Press, pp. 1-27.

Cassell, J., Vilhjalmsson, H. H., and Bickmore, T.
(2001). "BEAT: the Behavior Expression
Animation Toolkit"SIGGRAPH '01: Proceedings
of the 28th annual conference on Computer
graphics and interactive techniques. City: ACM:
New York, NY, USA, pp. 477-486.

Ekman, P., and Friesen, W. V. (1977). Facial Action
Coding System, Pao Alto, U.S.A.: Consulting
Psychologists Press Inc.

Estival, D., Broughton, M., Zschorn, A., and Pronger,
E. (2003). "Spoken Dialogue for Virtual
Advisers in a Semi-Immersive Command and

Control Environment"4th SIGdial Workshop on
Discourse and Dialogue. City: Sapporo, Japan.

Hiyakumoto, L., Prevost, S., and Cassell, J. (1997).
"Semantic and Discourse Information for Text-
to-Speech Intonation"ACL Workshop on
Concept-to-Speech Technology. City, pp. 47-56.

JAGaToo. (2011). JAGaToo - Java Abstract Gaming
Tools, http://sourceforge.net/projects/jagatoo/

Lambert, D. A. "Advisers with attitude for situation
awareness." Presented at Proceedings of the
1999 Workshop on Defense Applications of
Signal Processing, LaSalle, Illinois.

Lee, J., and Marsella, S. (2006). "Nonverbal Behavior
Generator for Embodied Conversational
Agents", J. Gratch, M. Young, R. Aylett, D.
Ballin, and P. Olivier, (eds.), Intelligent Virtual
Agents. City: Springer Berlin Heidelberg, pp.
243-255.

Nuance. (2011). Nuance, http://australia.nuance.com/

OSG Community. (2011). OpenSceneGraph,
http://www.openscenegraph.org

Taplin, P., Fox, G., Coleman, M., Wark, S., and
Lambert, D. "Situation Awareness Using a
Virtual Adviser." Presented at Talking Head
Workshop, OZCHI 2001, Fremantle, Australia.

The Stanford NLP Group. (2011). The Stanford
Parser: A statistical parser,
http://nlp.stanford.edu/software/lex-parser.shtml

Wark, S., and Lambert, D. A. (2007). "Presenting The
Story Behind The Data: Enhancing Situational
Awareness Using Multimedia Narrative"3rd
IEEE Workshop on Situation Management
(SIMA 2007). City: Orlando, FL.

Wark, S., Lambert, D. A., Nowina-Krowicki, M.,
Zschorn, A., and Pang, D. (2009). "Situational
Awareness: Beyond Dots on Maps to Virtually
Anywhere"SimTecT 2009. City: Adelaide,
Australia.

Wark, S., Zschorn, A., Perugini, D., Tate, A.,
Beautement, P., Bradshaw, J. M., and Suri, N.
(2003). "Dynamic Agent Systems in the CoAX
Binni 2002 Experiment"6th International
Conference on Information Fusion (Fusion
2003). City: Cairns, Australia.

174

