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Abstract

Different parsers trained on the same cor-

pus deliver different results, both in terms

of overall performance and in terms of the

individual analyses they provide. In par-

ticular, for any given sentence, one parser

may provide a correct analysis, while an-

other will produce an incorrect analysis; but

when faced with a different sentence, the

first parser may be in error while the sec-

ond is correct. In this paper, we leverage

this observation by exploring how the re-

sults of a number of different parsers may

be combined to provide a better performance

than any single parser. The method involves

constructing a chart that contains edges con-

tributed by a collection of parsers, with a

simple voting mechanism to choose the most

preferred constituents; this provides a signif-

icant improvement in performance over any

individual parser. More sophisticated voting

mechanisms are also discussed.

1 Introduction

Parsers make mistakes. This is perhaps most appar-

ent when a parser trained on a given corpus is ap-

plied to data from a domain or genre different to that

of the training corpus. One can, of course, retrain

the parser on new data that is more representative of

the texts to be handled; but annotation is an expen-

sive process, and the literature does not provide a

great deal of guidance as to how much annotation is

1Scott Nowson is now at Appen Pty Ltd.

required in order to obtain an acceptable result (but

see Reichart and Rappoport (2007a) for some recent

interesting results in this area).

Unfortunately, parsers make mistakes even on the

corpora on which they are trained. Before we begin

to consider how we might adapt a parser to a new

domain, we are therefore interested in how we might

improve the performance of existing parsers on the

corpora used to derive their models.

We make the observation that different parsers

have different ‘error profiles’, by which we mean

that different parsers do not necessarily make the

same mistakes. Consider the following verb phrase

taken from our test corpus:

. . . lock in profits by buying futures when
futures prices fall

Figure 1 shows the analyses provided for this verb

phrase by three different parsers, as an illustration

of the kinds of disagreements that are common. In

the first analysis, in is misclassified as a preposition,

while in the second and third analyses it is correctly

analysed as a particle. However, the second parse

contains a misparse of the embedded VP buying fu-
tures, while this is correctly analysed in the first and

third parses.

This leads us to the hypothesis that, if we were

able to select for each parser those parts of individ-

ual parses that are more likely to be correct, then

the overall result would be an improvement upon the

analysis of any individual parser. We explore this

hypothesis in this paper, by providing a framework

within which the analyses of different parsers can be

combined, and the overall best parse selected.
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Figure 1: Three analyses by different parsers

The idea of combining the results of different

parsers is not in itself new, so in Section 2 we

briefly survey related work in this area. In Sec-

tion 3 we describe our approach, which takes ad-

vantage of the central ideas in chart parsing to pro-

vide a way of combining parse results, and we de-

scribe the parsers used in our experiments. Sec-

tion 4 describes the results achieved by our method,

demonstrating a significant improvement upon the

performance achieved by any individual parser. Sec-

tion 5 discusses how the simple voting mechanism

presented here can be made more elaborate, with

the prospect of even better improvements in perfor-

mance, and Section 6 concludes.

2 Background: Combining Parsers

The combination of the results of several differ-

ent components that carry out the same task—

sometimes referred to as the ensemble-based

approach—has been employed and shown to be suc-

cessful in a number of fields such as part-of-speech

tagging (Halteren et al., 1998), word sense disam-

biguation (Pederson, 2000) and question answering

(Chu-Carroll et al., 2003).

There are a number of approaches that have been

employed for parser combination. Henderson and

Brill (1999) describe experiments that fall within

two general approaches they label parse hybridiza-
tion and parse switching. The most basic form of

hybridization is constituent voting, whereby con-

stituents in a parse are included if they can be found

in the majority of contributing parses. A second ap-

proach is to use a naı̈ve Bayes classifier in order to

learn how much each parser should be trusted.

The alternative to this approach is to deal only

with complete parses. Henderson and Brill again ex-

perimented with two approaches: similarity switch-
ing, whereby the parse chosen is the one which

scores highest when judged for similarity to the re-

maining parses in the set; and a second naı̈ve Bayes

approach to selecting the parse with the highest

probability of being the best. All four of Henderson

and Brill’s approaches produced better results than

any of the contributing parsers achieved: their best

result was a 30% reduction of precision error rate, a

6% reduction of recall error rate and an absolute F-

score increase of 1.58%. These ideas have been ex-

76



tended to take into account more context in adapta-

tion to dependency based parsers with similarly suc-

cessful results (Zeman and Žabokrtský, 2005).

Henderson and Brill (2000) followed their earlier

combination approach with one based on creating

an ensemble of complementary parsers. Each parser

was based upon the same underlying algorithm, but

trained on different data. By using bagging and

boosting approaches, their ensemble outperformed

all single parsers, with a 0.6% absolute improvement

in F-score. In a similar vein, Reichart and Rappoport

(2007b) generated a number of parsing models by

training one parser on slightly different training cor-

pora. The resulting outputs were compared in order

to judge the parse quality: the greater the number of

models in agreement, the higher the quality.

Clegg and Shepherd (2005) explored a number

of alternative approaches to ensemble parsing when

deploying trained parsers in a new domain. Using

basic constituent voting based on Brill and Hender-

son’s (1999) method, they report similar improve-

ments, mostly to precision but also to recall. They

achieved equally promising results from their vari-

ants of parse switching. The first of these was fall-
back cascades in which parsers are stacked in or-

der of decreasing levels of sophistication. When the

more complex model fails, the next parser attempts

to parse. The bottom parser may be less accurate,

but will be the least likely to fail. Their second

whole-parse approach they simply termed parse se-
lection, though it is similar to Henderson and Brill’s

similarity switching. Clegg and Shepherd varied this

by trying different similarity metrics, such as con-

stituent overlap or lineage similarity.

Sagae and Lavie (2006) apply a notion of re-

parsing to a two stage parser combination chart-

based approach. Once all single parses are com-

plete, the first stage is to store all possible con-

stituents in a chart with a label, start and end po-

sitions, and a weighting. Identical constituents from

different parses are merged by adding their weights.

The second stage of the process is to run a bottom-

up parsing algorithm, but rather than use a weighted

grammar, the parser is guided by the weighted set of

constituents. They experimented with different ap-

proaches to setting the initial weights of each non-

terminal label. By combining five parsers they were

able to achieve a error reduction of 44% for preci-

sion and 14% for recall, and an absolute F-score in-

crease of 1.1% (though it is worth noting each of

these are best improvements, made across a differ-

ent run made with different settings).

3 Our Approach

3.1 The Basic Idea
Our approach is based on the central idea in chart

parsing (Earley 1970; Kay 1980): for any ambigu-

ous string, the constituents derived from multiple

parses can be maintained in one data structure, so

that subsequent parses can reuse previously derived

partial analyses. The insight leveraged here is that

the same idea can be applied to multiple parsers: just

as the chart can contain multiple analyses for a string

as delivered by one parser, it can just as easily con-

tain multiple analyses delivered by several parsers,

thus providing a single unified view of all the dif-

ferent analyses, and allowing us to easily determine

where parsers agree and where they disagree.

This is a very simple idea, but one which enables

the development of a variety of approaches to choos-

ing which edges should be used in building a pre-

ferred parse; and, as we demonstrate below, even the

simplest methods provide good results.

Our approach to combination is built upon a basic

voting strategy, methodologically similar to Hender-

son and Brill (1999) and Sagae and Lavie (2006),

with implementational similarity to the latter. In its

purest form, voting is purely democratic: all nom-

inated constituents are considered equally suitable

candidates to fill a position in the parse, and the can-

didate with the most votes—i.e., the candidate pro-

posed by a majority of the parsers—is the winner.

The algorithm is simple:

1. Each sentence is parsed by multiple parsers.

2. The resulting Penn Treebank parse strings are

converted into a chart representation.

3. Starting with the root node, voting takes place

as to what the children of that node should be.

4. Step 3 is then repeated for each successful child

node.

5. When the tree is fully populated by terminal

nodes, the final chart is returned as a Penn Tree-

bank parse representation for evaluation.
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We now describe these stages in more detail.

3.2 Parsing

The first stage in our process is to parse each sen-

tence with the individual contributing parsers. In

the experiments reported here, we use three parsers:

the Stanford lexicalised parser (Klein and Manning,

2003); Collins generative parsing model number 2

(Collins, 1999) as re-implemented by Bikel (2004);

and the OpenNLP parser (Baldridge et al., 2003).

These were chosen for two reasons:

• all three parsers output parses in the standard

Penn Treebank notation, making conversion to

our chart representation the same process for

all; and

• all three are provided with Java API functional-

ity making incorporation into one system more

straightforward.

This latter advantage also reduces computation

times by enabling just a single parser initialisation

step before parsing all sentences.

3.3 Chart Representation

Once each sentence has been parsed, the result-

ing Penn Treebank parse strings are converted into

charts. In the standard approach, a chart is a collec-

tion of vertices that span sequences of one or more

words of the input, with pairs of vertices that are

connected by grammatically labeled edges; where

a sequence of words is amenable to more than one

analysis, each analysis is represented by a separate

edge. Subsequent decisions, or some other choice

mechanism, then determine which of the multiple

analyses should be chosen.

In the implementation used here, vertices are de-

fined in terms of character positions, while edges are

defined by the start and end positions and given a

grammatical label. As a step towards efficient imple-

mentation, each edge contributed by a given parser

also indicates the constituent edges—the grammati-

cal children—contained within the span of that edge.

By example, consider the sentence the cat sat, which

is analysed as follows:

(S (NP (DT the) (NN cat)) (VP (VBD

sat)))

and is spanned thus:

t h e c a t s a t
0 1 2 3 4 5 6 7 8 9 10 11

This analysis would be represented as a chart con-
sisting of edges:

(0, 12, S, {(0,7,NP), (8,11,VP)}}
(0, 7, NP, {(0,3,DT), (4,7,NN)})
(0, 3, DT, {(0,3,the)})
(4, 7, NN, {(4,7,cat)})
...

3.4 Chart Voting

The fundamental difference between our approach

and those of Henderson and Brill (1999) and Sagae

and Lavie (2006) described earlier is in the strat-

egy used when selecting constituents. Previous ap-

proaches have considered constituents in isolation:

Sagae and Lavie’s charts contain all possible con-

stituents, each assigned a weight based on their

presence across individual parsers, and these are

merely used to inform a second stage, bottom-up re-

parsing. By comparison, our system could be de-

scribed as a single-stage, top-down process which

operates across the prior parses. Similar to Sagae

and Lavie, we employ simple voting to determine

the choice of constituents, but we consider only

the nominated children of each already-decided con-

stituent. Since each such set of children corresponds

to a valid parse, we can ensure there will not be any

crossing brackets, and that the resulting parse will

be grammatically sound.

Each grammatical constituent is defined by an

edge within the chart. For each edge that cov-

ers the same span of words1 across the individual

parser outputs, the set of potential analyses can be

retrieved. Each such solution provides a poten-

tial constituent analysis with which to continue the

parse, and for whom votes can be tallied. So, in

a democratic manner, any child nominated by all

contributing parsers is unanimously voted into the

parse. Similarly, any constituents that obtain a ma-

jority vote also succeed. In the case of a tie, we

resort to arbitrarily choosing between the potential

solutions. The only restriction is that children are

chosen so that the entire span is accounted for and a

complete tree is created.

1Matching edges are defined by the tuple <start pos,
end pos, label>.
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Of course pure democracy, at least in the case of

parser combination, is quite naı̈ve. It treats all candi-

dates as equal and does not take past performance of

parsers into consideration; nor does it take into ac-

count the possibility that some parsers may perform

better in specific situations. Clearly a sensible step

forward here is to move towards a more meritocratic

approach, as discussed in Section 5 below.

3.5 An Example
As introduced earlier, Figure 1 illustrates how three

different parsers can construct parses that differ or

are similar in different ways. In this section, we walk

through the combination of these parses to provide

an example of how our approach works. To save

space and to aid clarity, we represent the span of any

node simply by listing the words contained in that

span.

In our example, we begin part-way through the

parse, where the the current node of interest is the

VP which spans from lock to futures. The analyses

of this node are retrieved from the charts delivered

by the three parsers, and votes are calculated across

the children:

VBP (‘lock’) 3 votes

PRT (‘in’) 2 votes

NP (‘profits’) 2 votes

PP (‘by . . . futures’) 2 votes

PP (’in . . . futures’) 1 vote

Three votes represents a unanimous decision,

while two is a majority; so, the decomposition of

the VP node that is common to the second and third

analyses is chosen.

Note that the PRT daughter of the VP node re-

ceives two votes in total, and subsequently so in turn

does it’s daughter, the RP. However, though the NP

node also received just two votes, the NNS node at

the next level of analysis receives three votes. This is

because in the case of one of these analyses the NP

node is buried deeper in the tree. Similarly, though

the PP in buying futures was voted twice for its po-

sition in the tree, it can be found in all three parses

at some level.

However, we have a disagreement as to the de-

composition of the PP:

IN (‘by’) 3 votes

S (‘buying futures’) 2 votes

NP (‘buying futures’) 1 vote

Parser P R F

Stanford 87.0 85.7 86.4

OpenNLP 88.1 87.7 87.9

Collins 72.9 88.9 80.1

Combined 90.7 89.5 90.1

Table 1: Precision, Recall and F-score for individual

parsers and their combination; sentence length <=
40 words (n = 2245).

Parser P R F

Stanford 86.4 85.0 85.7

OpenNLP 87.4 87.0 87.2

Collins 72.7 88.3 79.7

Combined 90.2 88.9 89.5

Table 2: Precision, Recall and F-score for individual

parsers and their combination; all sentences (n =
2416).

Consequently, the chosen analysis of the PP is that

proposed in the first and third trees.

3.6 Evaluation

We evaluate the results of our approach using the

PARSEVAL standard Evalb (Sekine et al., 2006).

The input to the system is Section 23 of the

Wall Street Journal (WSJ). All sentences are pre-

tokenised to ensure standard input, though each

parser executes its own part-of-speech tagging. The

system outputs four sets of parse strings: one for

each of the three constituent parsers, and one for the

final combined result. The sets of parses are com-

pared against the gold standard.

4 Results

We report the bracketing precision, recall and F-

score for sentences of length less than 40 words in

Table 1, and for all sentences in Table 2.

It is clear that the combined system performs the

best. Considering all sentences, we have achieved an

error reduction of 22% for precision and 5% for re-

call, along with an absolute F-score increase of 2.3%

over the best single contributor. In order to compare

our results with those of previous studies, we repro-

duce the results of Henderson and Brill (1999) and

Sagae and Lavie (2006) alongside our own in Ta-
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ble 3. Our results are comparable directly with those

of Henderson and Brill; Sagae and Lavie’s scores

are a compilation of their best scores across three

separate systems tuned to maximise each dimension,

hence the high increase in precision and recall.

As a further investigation, we employed a simple

measure of confidence in a parse as a function of the

number of parsers in the system, the total number of

edges in the final chart and the total number of votes

cast over just those successful edges:

confidence =

∑
votes

∑
edges×∑

parsers

Confidence will be highest if all the parsers

agreed on each edge (had the same parse through-

out) and will be lower the less they agree. Average

confidence across our output is 0.88, which suggests

that overall there was a high degree of agreement

across parsers. The confidence measure also shows a

significant correlation (p < .001) with the precision

and recall scores across all sentences. This suggests

that the system is most likely to be wrong when it

is least confident in its output, and so the confidence

metric is a good one.

5 Discussion

The performance values reported in Tables 1 and 2

show that the combined system produces more ac-

curate results than the original individual parsers, as

we had hoped. By simply taking a majority vote on

constituents, our system results in more correct con-

stituent analyses than those proposed by the individ-

ual parsers. However, the combined result is not a

huge improvement over the highest performing of

its contributing proposals.

It is of course possible that for the most part, all

parsers get the same things wrong — the rare and in-

frequent syntactic constructions. This would present

a simple voting system with no way to select the cor-

rect analysis. However, it is likely that systems that

get the same things wrong do so in the same way.

Such agreement on incorrectness still represents an

agreement, which would provide a high level of con-

fidence in the incorrect choice. However, looking at

our confidence scores, this incorrect agreement does

not appear to be the case: errors appear to follow a

lack of confidence — where there is most disagree-

ment.

The biggest weakness in our approach lies in the

arbitrary decision-making procedure used in break-

ing tied situations. In such tied situations, if the

wrong result is chosen, then all the constituent anal-

yses below that point have a high likelihood of be-

ing incorrect. This is a particular weakness of our

top-down approach, in contrast to Sagae and Lavie’s

bottom-up method.

There are a variety of ways in which the basic

model developed here could be extended. Of course,

one could extend the mechanism beyond the three

parsers that we use to incorporate a larger number of

parsers. However, a more interesting direction is to

improve the voting mechanism. The greatest num-

ber of errors appears to stem from situations of low

agreement, when voting is tied.2

One approach to resolving deadlocked situations

such as these might be to employ a lookahead ap-

proach. As illustrated in our example in section 3.5

upon voting across the top level VP, the NP receives

two votes. However, this is only because it was di-

rectly under the VP in two cases; the NP was in fact

still present in the third analysis, but buried further

down in the tree. In a tied situation, this fact would

have argued for one analysis over the other.

Another approach is to observe that, while

democracy is fair other things being equal, parsers

are more akin to experts to be consulted. For exam-

ple, we might think of each parser as having partic-

ular areas of expertise, in the sense that its perfor-

mance on some kinds of constituents might be bet-

ter than others. If a given parser has a track record of

performing well in the analysis of particular kinds of

constituents or substructures, then that parser’s vote

should carry more weight.

There are a number of approaches we might take

to developing a more meritocratic decision proce-

dure.

Track Record on This Parse: This is a general if

superficial measure of performance. It assumes

no external knowledge, and all parsers begin

with an equal weighting. Weightings are in-

creased automatically for every successful vote

that a parser casts. If all parsers always agree,

weights will remain equal. The more others in

2Note that these situations are even more likely to occur if
the system were to employ an even number of parsers.
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P % decrease R % decrease F % increase
Henderson and Brill, best individual 89.6 89.7 89.7

Henderson and Brill, combination 92.4 26.9 90.1 3.9 91.3 1.6
Sagae and Lavie, best individual 91.3 90.6 91.0

Sagae and Lavie, combination 95.1 43.7 91.9 13.8 92.1 1.1
Nowson and Dale, best individual 87.5 88.3 87.2

Nowson and Dale, combination 90.2 21.6 88.9 5.1 89.5 2.3

Table 3: Precision, Recall and F-score for parsers; The best individual parser from each study, plus the best

combined results, and the differences between them.

the system agree with a parser, the more pop-

ular it becomes, and the heavier its weight-

ing. The downside, however, is that should

one system perform well early on, its weight-

ing may be so much that a local maxima may

be reached.

Previous Track Record: This is also a general

measure of performance, but is static and re-

lies on external information. Weightings are

set based on the prior performance of a parser:

those that have previously produced most accu-

rate results will be trusted more and weighted

higher. One source for this data would be pre-

viously published, preferably comparable, re-

sults. However, as we noted at the start of

the paper, good performance in one domain or

genre does not guarantee similar results in an-

other.

Two other measures, as suggested by Henderson

and Brill (1999), take context into account:

Constituent-Level Track Record: The previous

approach gives higher weighting to the parsers

that have previously performed best overall,

but this does not mean they were the best

at everything. In this approach, we narrow

the focus to performance over individual

constituent types: higher weighting is given

to a parser’s vote, if upon prior evaluation it

has proven successful at selecting the specific

nominated constituent. The prerequisite to

this is that performance analysis must have

been carried out at the level of individual

constituents. Alternatives might include using

machine learning techniques to automatically

determine which parsers do best in which

situations.

Structural-Level Track Record: The approach

above could be further extended to take ac-

count of a larger amount of syntactic context;

for example, it might be the case that some

parers are better at subject NPs but less good

at object NPs. Here we would need to com-

pute weights based on past performance on

correct annotation of subtrees in an analysis;

clearly this could be done at varying levels of

granularity, modulo the problem of sparse data.

6 Conclusion

This paper reports work concerned with combining

parsers using a chart based representation and voting

scheme. It has introduced the methodology we will

employ in our future parsing work: the outputs from

multiple parsers are transformed into a chart repre-

sentation; by voting over children these charts are

combined into a single chart combining those con-

stituents for which there is the strongest evidence.

The combination process pursued here is based

on the simplest interpretation of evidence, where we

pursue a purely democratic approach. This approach

is most obviously deficient when we have to deal

with ties. Nonetheless, the resulting parses prove

more accurate than the single nominees that con-

tributed to their creation, and performance compares

well to previous studies that employ more complex

and sophisticated methods. This suggests our ap-

proach has considerable scope for subsequent im-

provement, some possible directions for which we

have outlined in the latter part of this paper.
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