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Abstract

This paper investigates the task of noun
compound interpretation, building on the
sense collocation approach proposed by
Moldovan et al. (2004). Our primary task
is to evaluate the impact of similar words on
the sense collocation method, and decrease
the sensitivity of the classifiers by expanding
the range of sense collocations via different
semantic relations. Our method combines
hypernyms, hyponyms and sister words of
the component nouns, based on WORDNET.
The data used in our experiments was taken
from the nominal pair interpretation task of
SEMEVAL-2007 (4th International Work-
shop on Semantic Evaluation 2007). In our
evaluation, we test 7-way and 2-way class
data, and show that the inclusion of hyper-
nyms improves the performance of the sense
collocation method, while the inclusion of
hyponym and sister word information leads
to a deterioration in performance.

1 Introduction

This paper investigates the automatic interpretation
of noun compounds (i.e. NCs), such as paper sub-
mission and computer science department. NC in-
terpretation is a well-known problem that aims to
predict the semantic relation (i.e. SR) between a
head noun and its modifying nominal(s) (i.e. mod-
ifiers). SRs, simply put, encapsulate how the head
noun and the other nominals in a noun compound
are related. As English noun phrases are right-
headed, the head noun occurs after all modifying

nouns. For example, brick house is interpreted as a
house that is modified by the word brick, which ex-
hibits a PRODUCT-PRODUCER relationship between
the two nouns in the compound. In contrast, the
modifier and head in house brick exhibits a PART-
WHOLE relationship, which is interpreted as a brick
from a house, rather than the former interpretation
of a house made of bricks. The set of SRs that we
are concerned with in this paper is defined in Sec-
tion 5.1.

Research on NCs can be categorised into four
main groups: defining SRs, disambiguating the syn-
tax of NCs, disambiguating the semantics of NCs,
and interpreting NCs via SRs. Each task is detailed
in Section 2.1. Interpreting NCs has received much
attention of late, and the problem has been addressed
in areas of machine translation (MT), information
extraction (IE), and applications such as question-
answering (QA). NCs pose a considerable challenge
to computational linguistics due to the following is-
sues (Lapata, 2002): (1) NCs are extremely produc-
tive; (2) the semantic relationship between the head
noun and its modifier(s) is implicit; and (3) the in-
terpretation of an NC can vary due to contextual and
pragmatic factors. Due to these challenges, current
NC interpretation methods are too error-prone to be
employed directly in NLP applications without hu-
man intervention or preprocessing.

In this paper, we investigate the task of NC in-
terpretation based on sense collocation. It has been
shown that NCs with semantically similar compo-
nents share the same SR (Kim and Baldwin, 2007);
this is encapsulated by the phrase sense colloca-
tion in Moldovan et al. (2004). For example, ap-

Proceedings of the Australasian Language Technology Workshop 2007, pages 49-56

49



ple pie has the same interpretation as banana cake
of PRODUCT-PRODUCER. This can be predicted by
the fact that the modifiers of both NCs (apple and
banana, respectively) are semantically similar (they
are both fruit), and the head nouns of both NCs (pie
and cake, respectively) are a type of baked edible
concoction. That the two NCs are based on the same
combination of semantic classes is a strong predictor
of the fact that they have the same SR.

One obvious problem when proceduralising se-
mantic collocation in an interpretation method is
data sparseness, i.e. we can’t expect to find instances
for all combinations of semantic classes, particularly
if we have a rich inventory of semantic classes such
as WORDNET. One approach to ameliorating the
data spareness is bootstrapping, in the manner of
Kim and Baldwin (2007), where new data is induced
by substituting the components of the NCs with se-
mantically similar terms. Our approach in this pa-
per is to add related terms as features into a clas-
sifier. The related terms we add are the NC com-
ponents’ hypernyms, hyponyms, and sister words,
based on the hypothesis that these related words can
contribute to the disambiguation of SRs.

The remainder of this paper is structured as fol-
lows. In Section 2 we introduce previous research
on NC interpretation and then talk specifically about
the research directly relevant to this work. Section 3
and Section 4 describe our motivation and method,
respectively. We describe the data used in our ex-
periments in Section 5 and present the results of our
experiments in Sections 6 and 7. Finally, we con-
clude our work in Section 8.

2 Related Work

This section presents a short description of the com-
putational tasks relating to NCs, and then reviews
research directly impinging on this research.

2.1 Background

The major tasks related to NCs involve syntactic and
semantic disambiguation.

The first step in semantic disambiguation is the
task of defining what relations exist in NCs. This
has gained much attention in recent decades, as well
as controversy, (Downing, 1977; Levi, 1979; Finin,
1980). In the study conducted by Levi (1979), it

was claimed that there were 9 distinct SRs, which
could be discretely defined and interpreted within
NCs, while Finin (1980) claimed an unlimited num-
ber of SRs. The problems surrounding this task in-
volve the issue of granularity versus coverage, which
to date remains widely debated.

Syntactic disambiguation (called bracketing) is
required when NCs are composed of more than 2
components, such as in the case of computer sci-
ence department, introducing the need for phrasal
disambiguation (Lauer, 1995; Nakov, 2005). Lauer
(1995) proposed probabilistic models (based on de-
pendency and adjacency analyses of the data). Later
Nakov (2005) built upon this by adding linguistic
features into these probabilistic models.

Methods employed in word sense disambiguation
(WSD) have also been used to enhance NC inter-
pretation; the noun components that comprise the
NCs are disambiguated using these WSD techniques
(Sparck Jones, 1983; Kim and Baldwin, 2007). Kim
and Baldwin (2007) carried out experiments on au-
tomatically modeling WSD and attested the useful-
ness of conducting word sense analysis of an NC in
determining its SR.

2.2 Previous Approaches to NC Interpretation
A majority of research undertaken in interpreting
NCs has been based on two statistical methods:
SEMANTIC SIMILARITY (Barker and Szpakowicz,
1998; Rosario, 2001; Moldovan et al., 2004; Kim
and Baldwin, 2005; Nastase, 2006; Girju, 2007;
Kim and Baldwin, 2007) and SEMANTIC INTER-
PRETABILITY (Vanderwende, 1994; Lapata, 2002;
Kim and Baldwin, 2006; Nakov, 2006). Our work,
based on an extension of the sense collocation
approach, corresponds to the semantic similarity
method.

A significant contribution to this area is by
Moldovan et al. (2004), who used the sense colloca-
tion (i.e. pair of word senses) as their primary feature
in disambiguating NCs. Many subsequent studies
have been based on this sense collocation method,
with the addition of other performance-improving
features. For example, Girju (2007) added contex-
tual information (e.g. the grammatical role and POS)
and cross-lingual information from 5 European lan-
guages as features to her model. In contrast, Kim
and Baldwin (2007) utilise sense collocations in a
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different way: instead of adding additional features
in their model, they increase the size of their training
data by substituting components of existing training
instances to generate additional training instances
(which is assumed to have the same SR as the origi-
nal). For an SR to be preserved, the newly-generated
NC must be semantically similar and hence main-
tain the same sense collocation as the original NC
on which it was based. A number of researchers
(Rosario (2001), Kim and Baldwin (2005), Nas-
tase (2006), inter alia) have attempted to interpret
NCs via implicit sense collocations. In particular,
they have come up with various methods for avoid-
ing direct WSD. Rosario (2001) retrieved the sense
pairs in the context of a hierarchical class set for the
biomedical domain. Kim and Baldwin (2005) used
a word-level similarity measure to express the sense
collocation of NCs. Nastase (2006) listed the hyper-
nyms of components as sense features.

3 Motivation

As mentioned above, Moldovan et al. (2004) showed
that the sense collocation of NCs is a key feature
when interpreting NCs. Further research in this area
has shown that not only synonymous NCs share
the same SR, but NCs whose components are re-
placed with more loosely related words also com-
monly have the same SR as the original NCs (Kim
and Baldwin, 2007). For example, car factory, vehi-
cle factory and truck factory—corresponding to syn-
onym, hypernym and sister word substitutions, re-
spectively, over automobile factory—share the same
SR of PRODUCT-PRODUCER as the source NC.

Figure 3 shows an example of semantic neigh-
bours for the two NCs car key and apple pie. Car
key can be interpreted as PRODUCT-PRODUCER by
referring to the training NC automobile key, since
they have the same sense collocation. With apple
juice, the sense collocation method tries to locate
matching sense collocations in the training data, and
finds that fruit juice matches closely, with the mod-
ifier being a hypernym of apple. From this, we can
hope to correctly interpret apple juice as having the
SR PRODUCT-PRODUCER. In order to achieve this,
we require some means of comparing nouns taxo-
nomically, both vertically to capture hypernyms and
hyponyms, and horizontally to capture sister words.

car key

train NC

orange juice

Sister Word

test NC

apple juice

fruit juice

train NC

test NC

test NC

apple juice

apple pie (SR=MAKE)

test NC

Hypernym

apple juice

Hyponym

train NC

crabapple juice

Synonym

train NC

automobile key

As intimated above, our motivation in conduct-
ing this research is to be able to include hypernym,
hyponym and sister word information without us-
ing direct substitution over the training instances,
but still preserving the essence of the sense colloca-
tion approach. The disadvantage of the method em-
ployed by Kim and Baldwin (2007) of recursively
bootstrapping off a seed set of NCs via different
lexical relations, is that noise will inevitably infect
the training data, skewing the classifier performance.
The original method described in Moldovan et al.
(2004) only relies on observed sense collocations.
The components of the NCs are represented as spe-
cific synsets in WORDNET, and the model does not
capture related words. Hence, in this paper, we aim
to develop a model that can take advantage of relat-
edness between WORDNET synsets via hypernyms,
hyponyms and sister words, without the risk of los-
ing semantic granularity or nintroducing noisy train-
ing data. Note that in Kim and Baldwin (2007), we
used synonyms, hypernyms and sister words. As
synonyms have an identical sense collocation within
WORDNET (i.e. pairing of synsets) to the original
NC, they are ignored in this research. Instead, we
add hyponyms as a means of broadening the range
of sense collocation.

4 Method

First, we describe the principal idea of the sense col-
location approach to NC interpretation and the prob-
ability model proposed in Moldovan et al. (2004).
Then we present our method using hypernyms, hy-
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ponyms and sister words in order to extend the sense
collocation method.

4.1 Sense Collocation
The basic idea behind sense collocation in Moldovan
et al. (2004) is based on the ‘pair-of-word-senses’
from the component nouns in NCs. They also in-
troduced a probability model called semantic scat-
tering, as detailed in Equations 1 and 2 below.
In essence, the probability P (r|fifj) (simplified to
P (r|fij)) of a modifier and head noun with word
sense fi and fj , respectively, occurring with SR r
is calculated based on simple maximum likelihood
estimation:

P (r|fij) =
n(r, fij)
n(fij)

(1)

The preferred SR r∗ for the given sense combination
is that which maximizes the probability:

r∗ = argmaxr∈RP (r|fij)
= argmaxr∈RP (fij |r)P (r) (2)

4.2 Adding Similar Words
We extend the approach of Moldovan et al. (2004)
by adding similar words as features focusing on hy-
pernyms, hyponyms and sister words of the modifier
and head noun.

We accumulate the features for semantic relations
based on different taxonomic relation types, from
which we construct a feature vector to build a clas-
sifier over. The features of each taxonomic relation
type are listed below. The first is features used in
the original sense collocation method. The second,
third and fourth are our experimental features, based
on hypernyms, hyponyms and sister words respec-
tively.

1. < WSmod,WShead >

2. < WSmod,H
i
mod,WShead,H

i
head >

3. < WSmod, Omod,WShead, Ohead >

4. < WSmod, Smod,WShead, Shead >

where mod is the modifier, head is the head noun,
WSmod is the WORDNET synset of the modifier,
WShead is the WORDNET synset of the head, H i is

an ith-degree ancestor (with direct hypernyms cor-
responding to H1), O is a hyponym and S is a sis-
ter word. We include up to the 7th-degree ancestor
(i.e. H7), in line with the findings of Nastase (2006).
Note that while a given synset has a unique hyper-
nym in WORDNET (assuming no cycles, or the abil-
ity to remove cycles by precompiling a tree struc-
ture), it can have arbitrarily many hyponyms and sis-
ter words. Here, we take the cross product of the
different hyponym and sister word candidates for a
given synset.

We build our final classifier with TIMBL V6.0, a
memory-based learner (Daelemans et al., 2004).

5 Data

Below, we outline the data used in our experiments.

5.1 Semantic Relation
The SR between a head and its modifier(s) in a NC
tells us how to (default) interpret the NC. For ex-
ample door knob corresponds to the PART-WHOLE

relation, which means we can interpret knob as
being part of a door. We sidestep the considerable
challenge of developing an optimal set of semantic
relation categories by using the set of SRs and data
from the SEMEVAL-2007 nominal pair interpreta-
tion task (Girju et al., 2007). The SRs defined for
the task are: CAUSE-EFFECT (CE), CONTENT-
CONTAINER (CC), INSTRUMENT-AGENCY (IA),
ORIGIN-ENTITY (OE), PART-WHOLE (PW),
PRODUCT-PRODUCER (PP) and THEME-TOOL

(TT). Table 1 provides a definition of each SR
along with example NCs.

5.2 Data Collection
From the SEMEVAL-2007 annotated data (Girju et
al., 2007), we collect two sets of data: a 2-class
dataset and a 7-class dataset. The 2-class dataset is
taken from the original SEMEVAL-2007 task, and
comprises a set of positive and negative instances
for each of the 7 SRs. The 7-class dataset is derived
from this, by combining all positive NCs across the 7
SRs, in line with the methodology of Kim and Bald-
win (to appear). The taxonomic relations are derived
from WORDNET3.0. In each of the two sets, we
use each of hypernyms, hyponyms and sister words.
Table 2 shows the number of hyponyms and sister
words in each dataset.
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Semantic relation Definition Examples
Cause-Effect (CE) N1 is the cause of N2 virus flu, hormone growth, inhalation death
Instrument-Agency (IA) N1 is the instrument of N2, N2 uses N1 laser printer, ax murderer, sump pump drainage
Product-Producer (PP) N1 is a product of N2, N2 produces N1 honey bee, music clock, supercomputer business
Origin-Entity (OE) N1 is the origin of N2 bacon grease, desert storm, peanut butter
Theme-Tool (TT) N2 is intended for N1 reorganization process, copyright law, work force
Part-Whole (PW) N1 is part of N2 table leg, daisy flower, tree forest
Content-Container (CC) N1 is store or carried inside N2 apple basket, wine bottle, plane carge

Table 1: The set of 7 semantic relations, where N1 is the head noun and N2 is a modifier

class Hyponym Sister word
mod head mod head

7-classes 4866 4708 7167 7456
2-classes (CE) 1272 774 3220 2043
2-classes (IA) 955 1804 1726 3722
2-classes (PP) 1526 1688 3058 3009
2-classes (OE) 2394 1730 3861 2907
2-classes (TT) 1383 812 2767 1698
2-classes (PW) 1403 1770 2900 4117
2-classes (CC) 1598 820 2620 1909

Table 2: Total number of hyponym- and sister word-
based NCs

6 7-way classification experiment

We ran our first experiment over the 7-class dataset.
The baseline was computed using a Zero-R (i.e. ma-
jority class) classifier.1 The performance of the orig-
inal method proposed in Moldovan et al. (2004) is
considered as a benchmark for our experiments. Ta-
ble 3 shows the performance of the original sense
collocation method and that of the extended sense
collocation model proposed in this paper.

Table 3 shows that our method, combined with
hypernyms, outperforms the original sense collo-
cation method, with the highest accuracy of .588
achieved with 5th-degree ancestors of the head noun
and modifier. This confirms that hypernyms are
valuable in extending the range of sense collocation
for NC interpretation.

In stark contrast to the results for hypernyms, the
results for hyponyms and sister words significantly
reduced the accuracy. The reason for this anomaly is
that hypernyms are able to generalize the sense col-
location without losing key discriminative features
(i.e. the hypernyms always, by definition, subsume

1The majority class was PRODUCT-PRODUCER.

the original semantic information), while hyponyms
and sister words add many sense collocations for
which we have no direct evidence (i.e. we indiscrim-
inately specialise the semantics without any motiva-
tion). Hence, hyponyms and sister words drastically
blur the sense collocation.

The reason that the accuracy of the hypernym
method drops in beyond a certain level is that the
semantic collocations start to blend in together, and
lose their power of discrimination.

7 2-way classification experiment

In our second experiment, we ran the systems over
the original data from SEMEVAL-2007, in the form
of a binary classifier for each of the 7 SRs. The per-
formance of each of the 2-way classification tasks is
shown in Table 4.

As we can see in Table 4, the basic pattern of the
results is the same as for the 7-way classification
task in Table 3. Adding hypernyms enhances per-
formance, peaking for 4th-degree ancestors in this
case at .679. As with the 7-way classification task,
hyponyms and sister words degraded performance,
for the same reasons as before.

Looking at the performance of each SR, we found
that some SRs are easier to interpret than others.
Notably, PRODUCT-PRODUCER and THEME-TOOL

were high performers, while CAUSE-EFFECT was
considerably harder to classify. These trends coin-
cide with the system results for the SEMEVAL-2007
task. Girju et al. (2007) analyze this effect in terms
of the intrinsic semantic complexity of the different
SRs, and also the relative size of the training data
for each SR. These effects are also observable in the
breakdown of precision and recall of each SR in Fig-
ure 1.

As we used the data from the SEMEVAL-2007
task, we are able to directly compare the perfor-
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B M+ H1 H2 H3 H4 H5 H6 H7 O S
Accuracy .217 .496 .544 .552 .573 .562 .588 .568 .557 .197 .142

Table 3: Results for the 7-way classification task: B = baseline, M+ = Moldovan et al. (2004) method, Hi =
ith-order Hypernym, O = Hyponym and S = Sister word; the best performing system is indicated in boldface

B M+ H1 H2 H3 H4 H5 H6 H7 O S
CE .547 .547 533 .573 .600 .606 .586 .607 .630 .467 .453
IA .507 .581 .595 .608 .649 .671 .653 .629 .645 .500 .500
PP .655 .667 .679 .691 .679 .737 .700 .690 .687 .655 .655
OE .558 .636 .623 .610 .662 .645 .662 .625 .712 .558 .558
TT .636 .697 .727 .712 .742 .766 .732 .717 .650 .515 .394
PW .634 .620 .690 .690 .629 .657 .585 .731 .630 .633 .634
CC .514 .676 .703 .689 .689 .676 .667 .647 .698 .446 .514
All .579 .632 .649 .653 .662 .679 .654 .661 .667 .541 .534

Table 4: Results for each of the 2-way classification tasks: B = baseline, M+ = Moldovan et al. (2004)
method, Hi = ith-order Hypernym, O = Hyponym and S = Sister word; the best performing system is
indicated in boldface

mance of our method with the official results from
the competing systems. Table 5 shows the three
baselines provided by the SEMEVAL-2007 organ-
isers (see Girju et al. (2007)). Here, All True is com-
puted by guessing “true” for all relations, maximiz-
ing recall; probability is computed by randomly as-
signing “true” (or “false”) with a probability match-
ing the distribution of the labels in the training data
for the given relation, and is intended to balance pre-
cision and recall; and majority is computed by as-
signing the majority class (either “true” or “false”)
from the training data for the given relation.

We also present the best-performing system and
the average performance within group B from the
SEMEVAL-2007 task (the grouping of systems
which don’t use gold-standard sense tags, and which
also don’t make use of the “query” used to source the
examples).

As shown in Table 5, the performance of our
method using hypernyms outperformed all three
baselines. The performance using hyponyms and
sister words only exceeded the All True and Prob-
ability baselines. The interesting point here is that
although the method is meant for general-purpose
interpretation not for the binary decision task, our
proposed method with hypernyms achieves better
results than the baselines and is competitive with the

Accuracy

CCPWTTOEPPIACE

w/ 4th Hypernym

Semantic Relation

 0

0.8

R
F

0.6

0.4

0.2

 0

1.0

 0

P
1.0

Figure 1: TPR for each of the binary tasks with 4th-
degree hypernyms

other systems in the original competition (average
accuracy of group B = .656 vs. our best = .679).
Therefore, we conclude that sense collocation inte-
grated with hypernyms has the potential to extend
the basic sense collocation method and improve per-
formance for the NC interpretation task.

8 Conclusion

In this paper, we have investigated the impact of us-
ing different taxonomic relations to expand a sense
collocation method of NC interpretation. That is, we
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Figure 2: TNR for each of the binary tasks with 4th-
degree hypernyms

Method P R F A
All True .485 1.00 .648 .485

Probability .485 .485 .485 .517
Majority .813 .429 .308 .570

Best .797 .698 .724 .763
Average .650 .637 .631 .656

Table 5: Results of 2-way classification
(P=precision, R=recall, F=F-score, A=accuracy)

experimented with the integration of similar terms
into a sense collocation model. We added up to the
7th-degree hypernyms, direct hyponyms and direct
sister words terms as features to the classifier. We
ran experiments over 7-way and 2-way classification
tasks using data from SEMEVAL-2007, and found
that the inclusion of hypernym information signifi-
cantly improved accuracy, while hyponyms and sis-
ter words degraded performance by arbitrarily over-
specialising the sense information.

While intuitively all of hypernyms, hyponyms and
sister words would appear to provide rich features
for a sense collocation method, further research is
needed to develop ways of successfully incorporat-
ing hyponyms and sister words into the NC interpre-
tation task.
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