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Abstract

This paper investigates whether multi-
semantic-role (MSR) based selectional
preferences can be used to improve the
performance of supervised verb sense dis-
ambiguation. Unlike conventional se-
lectional preferences which are extracted
from parse trees based on hand-crafted
rules, and only include the direct subject
or the direct object of the verbs, the MSR
based selectional preferences to be pre-
sented in this paper are extracted from
the output of a state-of-the-art semantic
role labeler and incorporate a much richer
set of semantic roles. The performance
of the MSR based selectional preferences
is evaluated on two distinct datasets: the
verbs from the lexical sample task of
SENSEVAL-2, and the verbs from a movie
script corpus. We show that the MSR
based features can indeed improve the per-
formance of verb sense disambiguation.

1 Introduction

Verb sense disambiguation (VSD) is the task of
examining verbs in a given context and specify-
ing exactly which sense of each verb is the most
appropriate in that context. VSD is a subtask of
word sense disambiguation (WSD). Given a verb
sense inventory and a set of verb senses, VSD is
essentially a classification task (Yarowsky, 2000).

VSD has not received much attention in the lit-
erature of WSD until recently. Most of WSD sys-
tems disambiguate verbs in the same way as nouns
using mostly collocation based features, and this
has led to rather poor VSD performance on cor-
pora such as SENSEVAL-2. One useful but often

ignored source of disambiguation information for
verbs is the patterns of verb-argument structures.
In this paper, we will attempt to capture these pat-
terns through the use of selectional preferences.

In general, selectional preferences describe the
phenomenon that predicating words such as verbs
and adjectives tend to favour a small number of
noun classes for each of their arguments. For ex-
ample, the verbeat (“take in solid food”) tends to
select nouns from to theANIMATED THING class
as its EATER role, and nouns from theEDIBLE

class as itsEATEE role.
However, it is possible to extend the concept

of selectional preferences to include nouns which
function as adjuncts to predicating words. For ex-
ample, the verbhit in the sentenceI hit him with
my fistsstands for “deal a blow to, either with the
hand or with an instrument”, but in the sentenceI
hit him with a car, it stands for “to collide with”,
with the only difference between the two instances
of hit being their manner modifiers. Intuitively, the
inclusion of verb adjuncts can enrich the semantic
roles (SRs) and provide additional disambiguation
information for verbs. Therefore, in the rest of this
paper, the concept of “semantic role” will include
both the arguments and adjuncts of verbs.

All the selectional preference based WSD sys-
tems to date have only used the subject and di-
rect object of verbs as semantic roles, extracting
the necessary argument structure via hand-crafted
heuristics (Resnik, 1997; McCarthy and Carroll,
2003, inter alia). As a result, it is difficult to ex-
tend the selectional preferences to anything else.
However, with recent progress in Semantic Role
Labelling (SRL) technology, it is now possible to
obtain additional semantic roles such as the indi-
rect object of ditransitive verbs and the locational,
temporal and manner adjuncts.
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Given the lack of research in VSD using multi-
semantic-role based selectional preferences, the
main contribution of the work presented in this
paper is to show that it is possible to use the
multi-semantic-role based selectional preferences
extracted using the current state-of-the-art SRL
systems to achieve a certain level of improvement
for verb VSD. We also give detailed descriptions
for all the features, feature selection algorithms
and the tuning of the machine learner parameters
that we have used in the construction of our VSD
system, so that our system can be easily repro-
duced.

The remainder of this paper is organized as fol-
lows: we first introduce the framework for con-
structing and evaluating the VSD systems in Sec-
tion 2; we then give detailed descriptions of all
the feature types that we experimented with dur-
ing our research in Section 3; Section 4 intro-
duces the two datasets used to train and evaluate
the features; the feature selection algorithms are
presented in Section 5; the results of our experi-
ments are presented in Section 6; and finally we
conclude in Section 7.

2 VSD Framework

There are three components in our VSD Frame-
work: extraction of the disambiguation features
from the input text (feature extraction), selection
of the best disambiguation features with respect to
unknown data (feature selection), and the tuning
of the machine learner’s parameters. Since feature
extraction is explained in detail in Section 3, we
will only disscuss the other two components here.

Within our framework, feature selection is per-
formed only on the training set. We first use the
feature selection algorithms described in Section 5
to generate different feature sets, which are used to
generate separate datasets. We then perform cross
validation (CV) on each dataset, and the feature
set with the best performance is chosen as the fi-
nal feature set.

The machine learning algorithm used in our
study is Maxium Entropy (MaxEnt: Berger et
al. (1996)1). MaxEnt classifiers work by mod-
elling the probability distribution of labels with re-
spect to disambiguation features, the distribution
of which is commonly smoothed based on a Gaus-

1We used Zhang Le’s implementation which is avail-
able for download athttp://homepages.inf.ed.
ac.uk/s0450736/maxent toolkit.html

sian prior. Different values for the Gaussian prior
often lead to significant differences in the classi-
fication of new data, motivating us to include the
tuning of the Gaussian prior in VSD framework.2

The tuning of the Gaussian prior is performed in
conjunction with the feature selection. The CV for
each feature set is performed multiple times, each
time with a different parameterisation of the Gaus-
sian prior. Therefore, the final classifier incorpo-
rates the best combination of feature set and pa-
rameterisation of the Gaussian prior for the given
dataset.

3 Features Types

Since selectional preference based WSD features
and general WSD features are not mutually ex-
clusive of each other, and it would be less con-
vincing to evaluate the impact of selectional pref-
erence based features without a baseline derived
from general WSD features, we decided to include
a number of general WSD features in our exper-
iments. The sources of these features include:
Part-of-Speech tags extracted using a tagger de-
scribed in Gimnez and Mrquez (2004); parse trees
extracted using the Charniak Parser (Charniak,
2000); chunking information extracted using a sta-
tistical chunker trained on the Brown Corpus and
the Wall Street Journal (WSJ) section of the Penn
Treebank (Marcus et al., 1993); and named enti-
ties extracted using the system described in Cohn
et al. (2005).

3.1 General WSD Features

There are3 broad types of general WSD features:
n-gram based features of surrounding words and
WordNet noun synsets, parse-tree-based syntactic
features, and non-parse-tree based syntactic fea-
tures.

3.1.1 N -gram based features

The followingn-gram based features have been
experimented with:

Bag of Words Lemmatized open class words in
the entire sentence of the target verb. Words that
occur multiple times are only counted once.

Bag of Synsets The WordNet (Fellbaum, 1998)
synsets for all the open class words in the entire

2We experimented with the following settings for the stan-
dard deviation (with a mean of 0) of the Gaussian prior in all
of our experiments:0.1, 0.5, 1.0, 5.0, 10.0, 50.0, 100.0,
500.0, 1000.0.
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sentence; hypernyms for nouns and verbs are also
included.

Bag of POS Tags The POS tag of each word
within a window of 5 words surrounding the target
verb, paired with its relative position and treated as
a separate binary feature.

Bag of Chunk Tags The chunk tags (in
Inside-Outside-Beginning (IOB) format: Tjong
Kim Sang and Veenstra (1999)) surrounding and
including the target verb within a window of 5
words, paired with their relative positions.

Bag of Chunk Types The chunk types (e.g. NP,
VP) surrounding and including the target verb
within a window of 5 words.

Bag of Named Entities The named entities in
the entire sentence of the target verb.

Left Words Each lemmatized word paired with
its relative position to the left of the target verb
within a predefined window.

Right Words Each lemmatized word paired
with its relative position to the right of the target
verb within a predefined window.

Surrounding Words The union ofLeft Words
andRight Words features.

Left Words with Binary Relative Position
Each lemmatized word and its position3 to the left
of the target verb within a predefined window.

Right Words with Binary Relative Position
Each lemmatized word and its binary position to
the right of the target verb within a predefined win-
dow.

Surrounding Words with Binary Relative Po-
sition The union ofLeft Words with Binary
Position andRight Words with Binary Position
features.

Left POS-tags The POS tag of each word to the
left of the target verb within a predefined window,
paired with its relative position.

Right POS-tags The POS tag of each word to
the right of the target verb within a predefined win-
dow is paired with its relative position.

3All words to the left of the target verb are given the “left”
position, and all the to the right of the target verb are given
the “right” position.

Surrounding POS Tags The Union of theLeft
POS-tags andRight POS-tags features.

It may seem redundant that for the same win-
dow size, the Surrounding-Words (POS) features
are the union of the Left-Words (POS) features
and the Right-Words (POS) features. However,
this redundancy of features makes it convenient
to investigate the disambiguation effectiveness of
the word collocations before and after the target
verb, as well as the syntactic pattern before and
after the target verb. Furthermore, we have also
experimented with different window sizes for the
Surrounding-Words (POS), Left-Words (POS) and
Right-Words (POS) to determine the most appro-
priate window size.4

3.1.2 Parse tree based features

The parse tree based syntactic features are in-
spired by research on verb subcategorization ac-
quisition such as Korhonen and Preiss (2003), and
are intended to capture the differences in syntactic
patterns of the different senses of the same verb.
Given the position of the target verbv in the parse
tree, the basic form of the corresponding parse tree
feature is just the list of nodes ofv’s siblings in
the tree. Figure 1 shows the parse tree for a sen-
tence containing the ambiguous verbcall. Given
the position of the target verbcalled in the parse
tree, the basic form of the features that can be cre-
ated will be(NP,PP ). However, there are3 ad-
ditional types of variations that can be applied to
the basic features. The first variation is to include
the relative positions of the sibling node types as
part of the feature: this variation will change the
basic feature forcall to {(1, NP ), (2, PP )}. The
second variation is to include the binary relative
direction of the siblings to the target verb as part of
the feature, i.e. is the sibling to the left or right of
the target verb: this variation will change the basic
feature forcall to {(right,NP ), (right, PP )}.
The third variation is to include the parent node
type as part of the sibling node type to add more
information in the syntactic pattern. Figure 2
shows what the original parse tree looks like when
every nonterminal is additionally annotated with
its parent type. Since the third variation is com-
patible with the first two variations, we decided to
combine them to create the following parse tree

4In the ranking based evaluation method described in Sec-
tion 5, only the Surrounding-Words (POS) feature types with
the largest window size are used.
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based features:

Type 1 Original sibling node types (zero level of
parent node annotated) with relative positions.

Type 2 Original sibling node types with relative
binary directions.

Type 3 One level of parent-node-annotated sib-
ling node types with relative positions. Us-
ing the call example, this feature will be
{(1, VP-NP), (2, VP-PP)}.

Type 4 One level of parent-node-annotated sib-
ling node types with relative binary directions.
Using the call example, this feature will be
{(right, VP-NP), (right, VP-PP)}.

Type 5 Two levels of parent-node-annotated sib-
ling node types with relative positions.

Type 6 Two levels of parent-node-annotated
sibling node types with relative binary directions.

On top of the 6 types of purely syntactic based
parse tree features, there is an additional type of
parse tree based feature designed to capture the
verb-argument structure of the target verb. The
type of features only cover four particular types
of parse tree nodes which are immediately after
the pre-terminal node of the target verb. The four
types of parse tree nodes are: ADVP, NP, PP and
clausal nodes.

For an ADVP node, we extract its head adverb
H ADV , and treat the tuple of (ADVP, H ADV )
as a separate binary feature.

For an NP node, we first extract its head nouns,
then replace each head noun with its WordNet
synsets and the hypernyms of these synsets, and
treat each of these synsets as a separate binary fea-
ture. In order to cover the cases in which the head
noun of a NP node is a quantity noun, e.g.a glass
of water, the head nouns of PPs attached to the NP
nodes are also included as head nouns. Further-
more, head nouns which are named entities identi-
fied by the system described in Cohn et al. (2005)
are replaced by appropriate WordNet synsets.

For a PP node, we first extract its head preposi-
tion, then we extract the head noun synsets in the
same way as the NP node, and finally we combine
each synset with the head preposition to form a
separate binary feature.

For a clausal node which is an SBAR, we ex-
tract the list of node types of its direct children

and arrange them in their original order, and treat
this list as a single binary feature.

For a clausal node which is not an SBAR, but
has a single non-terminal child node, we first ex-
tract the type of this child node, then we ex-
tract the list of node types for the children of this
child node. The tuple of (child-node-type, list-of-
grandchildren-node-types) is then treated as a sep-
arate binary feature.

3.1.3 Non-parse tree based syntactic features

There are3 types of non-parse-tree based syn-
tactic features:

Voice of the verb The voice of the target verb
(active or passive).

Quotatives Verbs that appear in directly quoted
speech have a greater likelihood of occurring in
the imperative and losing the surface subject, e.g.
“Call the police!” . We therefore include this as a
standalone feature.

Additional Chunk based features A number
of additional chunk based features are also used
to capture the phrase level localized syntactic
and collocation patterns from the context to the
right of the target verb within a window of be-
tween 3 and 10 chunks. For example, using a
window of 7, for the verbkick in the sentence:
[I/PRP]NP [kicked/VBD]VP [him/PRP]NP [out/IN
of/IN]PP [the/DT door/NN]NP [through/IN]PP

[which/WDT]NP [he/PRP]NP [came/VBD]VP, the
first 7 chunks after the chunk that containskick
will be used for feature extraction. These addi-
tional chunk based features are:

Chunk-type-sequence The concatenation of all
the relevant chunk types. For example, us-
ing the abovekick example, this feature will be
NP PP NP PP NP NP VP.

Regular expression (RE) representation
of the chunk types The consecutive
identical chunk types in theChunk-type-
sequence feature merged into a single symbol.
For example, the chunk-type-sequence of
NP PP NP PP NP NP VP will be represented
asNP PP NP PP NP+ VP.

First word of each chunk with the chunk type
The list that contains the first word of each
chunk will be treated as a separate binary fea-
ture. With thekick example, this feature would
behim out the through which he came.
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Figure 1: Basic parse tree feature example

Figure 2: One level parent annotated parse tree

Last word of each chunk with the chunk
type The list that contains the last word of
each chunk will be treated as a separate fea-
ture. With thekick example, this feature would
behim of door through which he came.

First POS tag of each chunk with the chunk
type The list that contains the first POS tag
of each chunk will be treated as a separate fea-
ture. With thekick example, this feature would be
PRP IN DT IN WDT PRP VBD.

Last POS tag of each chunk with the chunk
type The list that contains the last POS tag of
each chunk will be treated as a separate fea-
ture. With thekick example, this feature would
bePRP IN NN IN WDT PRP VBD.

Chunk-type-sensitive combinations This fea-
ture is created by merging the chunk types and
some additional information associated with the
chunks. If a chunk is a PP, then the head prepo-
sition will also be part of the feature; if a chunk
is an NP and the head word is a question word
(who, what, when, how, whereor why), the head
word itself will be part of the feature, but if the
head word is not a question word, its POS tag will
be part of the feature; if a chunk is a VP, then
the POS tag of the head verb will be part of the

feature. Using the abovekick example, this fea-
ture will be: (NP, PRP) (PP, out) (NP, NN) (PP,
through) (NP, which) (NP, PRP) (VP, VBD).

3.2 Selectional Preference Based Features

We used the ASSERT5 system (Hacioglu et al.,
2004) to extract the semantic roles from the tar-
get sentences. The following selectional prefer-
ence based features have been experimented with:

WordNet synsets of the head nouns of the SRs
For each semantic role, the WordNet synsets of its
head noun, paired with the corresponding seman-
tic role.

Semantic role’s relative positions These fea-
tures are designed to capture the syntactic patterns
of the target verb and its semantic roles. The rel-
ative position is set up such that the first semantic
role to the left of the target verb will be given the
position of−1, and the first one to the right will
be given the position of+1.

Lemmatized head noun of each semantic role
Similar to the synset features, each semantic role
is also paired with its head noun.

5We used version 1.4b of this system which can be down-
loaded fromhttp://oak.colorado.edu/assert/
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Preposition of the adjunct semantic role If
there is an adjunct semantic role which is also a
prepositional phrase, the preposition is also paired
with the semantic role.

4 Evaluation Datasets

We used two datasets based on distinct text gen-
res to examine the effectiveness of the multi-
semantic-role based selectional preferences: the
verb dataset from the English lexical-sample sub-
task of SENSEVAL-2, and a manually sense tagged
movie script corpus (MSC).6 The SENSEVAL-
2 data contains 28 polysemous verbs, and 3564
training instances. The movie script corpus con-
tains 8 sense labelled verbs and 538 training in-
stances. Table 1 outlines the composition of the
movie script corpus dataset.

The sense tagged movie script corpus is impor-
tant because it is an integral part of a broader NLP
project which aims to generate computer anima-
tion by interpreting movie scripts. Since most of
the actions in movie scripts are described by verbs,
we believe it is necessary to investigate whether
knowing the senses of the verbs can improve the
accuracy of the animation generation.

The movie script corpus was hand-tagged by
two annotators according to WordNet 2.0 senses,
and the differences in the annotation were ar-
bitrated by a third judge. Compared with the
SENSEVAL-2 data, which comes from the Brown
Corpus, the sentences in the movie script corpus
tend to be shorter because they describe certain
actions to be performed in the movie. Example
sentences from this corpus include the following:

1. A rubber darthits the glass and drops into a
trash can next to the door .

2. Neo slowly sets down his duffel bag and
throws open his coat, revealing an arsenal
of guns, knives, and grenades slung from a
climbing harness.

3. Morpheus tries tolook not sad.

5 Feature Selection Algorithms

It has been observed that combining certain fea-
tures together can lead to a decrease in classifi-
cation accuracy, hence a feature selection process

6The entire MSC dataset contains more than 250 movie
scripts, but due to limited resources, only 3 scripts were sense
tagged, and only 8 high frequency and highly polysemous
verbs were chosen for this study.

is deemed necessary. Due to the high numbers
of individual binary features and feature types,
it would be impractical to generate all possible
combinations of the individual features or feature
types. Therefore, we propose two automatic fea-
ture selection algorithms here: the individual fea-
ture ranking algorithm and feature type coverage
algorithm.

5.1 Individual Feature Ranking Algorithm

This algorithm is based on the work of Baldwin
and Bond (2003) and works by first calculating the
information gain (IG), gain ratio (GR) and Chi-
square statistics (Chi) for each binary feature as
3 separate scores. Then, each score is separately
used to rank the features in a way such that the
greater the score, the higher the rank. Features
which have the same value for a particular score
are given the same rank. Once individual ranks
have been determined for each feature, the ranks
themselves are summed up and used as a new
score which is then used to re-rank all the features
one last time. This final ranking will be used to
perform the feature selection.

Once the final ranking of the features has been
calculated, we then generate separate feature sets
using the topN percent ranked features, whereN

ranges from0 to 100 with an increment of5.7 We
evaluate these feature sets in Section 2.

5.1.1 Feature Type Coverage Algorithm

The aim of this algorithm is to use the minimal
number of featuretypes to generate the best per-
formance. It works in the following way. First,
we assign a unique ID to every training instance
in the original training set. We then create a sep-
arate dataset for each individual feature type (e.g.
Bag Of Words, Left Words, etc.) and evaluate
them as per Section 2. Since the single-feature-
typed datasets are all created from the same orig-
inal training set, we can propagate the IDs of
the original training instances to the testing in-
stances in the held-out sets of the single-feature-
typed datasets. Furthermore, as the CVs are strati-
fied, we can calculate the accuracy of each feature
type with respect to each training instance. For
example, suppose the10th training instance for
the verbhit was correctly classified in the held-
out set by the classifier trained with only theverb-
argument structure features, then the accuracy

7The top0% feature set is replaced by the majority-class
heuristic
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Freq. in Sense Freq. in No. of Senses in Majority Inter AnnotatorVerb
Tagged Corpus entire corpus Sense Tagged Corpus Class RatioAgreement

hit 32 1770 6 .438 .828
lift 31 1051 4 .548 .807

look 164 19480 5 .884 .963
pull 79 5734 7 .410 .744
stop 43 3025 4 .524 .917
take 54 8277 14 .370 .679

throw 29 1940 6 .379 .724
turn 106 8982 10 .736 .953

Table 1: Movie script corpus details

of verb-argument structure feature type on this
particular training instance would be1.0. With
these training-instance-specific accuracies, we de-
fine thecoverage of a feature type as a mapping
from training instance IDs to their individual ac-
curacies. We also use the sum of the accuracies
of the individual data instance to assess the overall
coverage of particular feature type with respect to
a training set.

In order to assess the coverage of combined
feature types, we define an additional procedure
called combine for merging two coverages to-
gether to produce a new coverage. The details of
this algorithm are shown in Algorithm 1.

On top of the coverages, we also calculate the
applicability of each feature type as the percent-
age of held-out instances for which one or more
features of that particular type can be extracted.
The final phase of the feature selection algorithm
is a process of greedily combining the cover-
ages of feature types together until the coverage
plateaus to a local maximum. This process is de-
scribed in Algorithm 2.

6 Results and Discussion

For the SENSEVAL-2 data, the feature selection al-
gorithms were applied on the 10-fold cross vali-
dated training set and the chosen features type and
the Gaussian smoothing parameters were applied
to the test set. For the movie script corpus, the
feature selection algorithms were applied to 5-fold
nested cross validation of the entire dataset. The fi-
nal cross validation results are reported here.8 Fur-
thermore, in order to measure the usefulness of the
feature selection algorithm, we have also included
results obtained using “Oracled” feature sets and
Gaussian prior values which were tuned with re-

8In nested cross validation, the training set of each fold is
further divided into a sub-training and sub-held-out set, and
the feature selection and Gaussian smoothing parameters for
the proper held-out sets are tuned on a fold-by-fold basis.

spect to the test data. More specifically, we col-
lected the following information for our evalua-
tion:

Fully Oracled Using both oracled feature sets
and oracled Gaussian prior values.

FS Oracled Using oracled feature sets but auto-
matically selected Gaussian prior values.

Maxent Oracled Using automatically selected
feature sets and oracled Gaussian prior values.

Fully Auto. Using both automatically selected
feature sets and Gaussian prior values.

All Features Including all features and using
automatically selected Gaussian prior values.

Tables 2 and 3 respectively summarize the eval-
uation results on the datasets with and without
SRL features.9

It can be observed that the impact of the feature
selection algorithms on the SENSEVAL-2 dataset
is similar to that on the MSC dataset. The fea-
ture ranking algorithm seems to perform notice-
ably worse than having no feature selection at all,
but the coverage algorithm seems perform mostly
better. This shows that feature selection can be a
useful process irrespective of the corpus.

The disappointing performance of the feature
ranking algorithm on both datasets is caused by
the mismatch between the training and the testing
data. Recall that this algorithm works by selecting
the topN percent of features in terms of their dis-
ambiguation power. Since the feature selection is
only performed on the training set, the chosen fea-
tures could be absent from the test set or have dif-
ferent distributions with respect to the verb senses.
Verb-by-verb analysis for this algorithm revealed

9The majority class baseline for the MSC dataset is gath-
ered from the primary held-out sets of the nested CV, there-
fore it is potentially different to the majority class of theentire
MSC dataset.
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Algorithm 1 The algorithm ofcombine, which merges two coverages to produce a new coverage.
1: LetI be the set of IDs of the training instances
2: LetCoverage

1
andCoverage

2
be the two coverages to be merged

3: LetNewCoveragebe the combined coverage ofCoverage
1

andCoverage
2

4: for i ∈ I do
5: NewCoverage[i] = max(Coverage

1
[i], Coverage

2
[i])

6: end for
7: ReturnNewCoverage

Algorithm 2 The incremental process of determining the final set of feature types
1: LetI be the set of IDs of the training instances
2: CurrentCoverage= {(i→ 0.0)|i ∈ I}
3: LetF be the set of feature types
4: Combine(coverage

1
, coverage

2
) = {(i→ max(coverage

1
[i], coverage

2
[i]))|i ∈ I}

5: while Truedo
6: NCs← {} . Initialize a temporary list to hold the new combined coverages
7: for fi ∈ F do
8: NewCoveragei ← Combine(CurrentCoverage, Coveragefi

)
9: Add NewCoveragei to NCs

10: end for
11: Let NewCoverage? ∈ NCs be the one with highest overall coverage. . Break tie with the lowest applicability.
12: if CurrentCoveragehas the same overall coverage asNewCoverage? then
13: Break
14: end if
15: CurrentCoverage← NewCoverage?

16: end while

Individual Feature ranking Feat. Coverage Majority
Dataset Fully FS Maxent Fully All Maxent Fully Class

Oracled Oracled Oracled Auto. FeaturesOracled Auto. Baseline
SENSEVAL-2 .623 .615 .556 .540 .574 .588 .583 .396

MSC .774 .743 .602 .577 .690 .712 .712∗ .617

Table 2: Disambiguation accuracies with SRL features (∗ indicates significantly higher performance than
the all features baseline (pairedt-test,p > 90%))

Individual Feature ranking Feat. Coverage Majority
Dataset Fully FS Maxent Fully All Maxent Fully Class

Oracled Oracled Oracled Auto. FeaturesOracled Auto. Baseline
SENSEVAL-2 .606 .595 .544 .529 .558 .583 .576 .396

MSC .780 .747 .554 .532 .714 .721 .693 .617

Table 3: Disambiguation accuracies without SRL features
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that for most verbs, there was very little correla-
tion between the training data and the test data in
terms of the value ofN verses the disambiguation
performance. This is why this algorithm consis-
tently selected suboptimal feature sets which re-
sulted in the poor performance. This mismatching
problem is especially severe for the MSC corpus
which contains many verb senses that occur only
once.

On the other hand, the performance of the cov-
erage based algorithm tends to be similar to or
better than that of using all the features. Recall
that this algorithm selects feature types in such a
way that the coverage of the final feature set is
maximized. As a result, even feature types which
performed poorly on the training set may be se-
lected as long as they performed well on some
of the training instances that other features per-
formed poorly on. Therefore, the features chosen
by this algorithm are less likely to overfit the train-
ing data.

Overall, it can be observed that for both
datasets, most of our automatic classifiers outper-
form the majority class baseline, which is very en-
couraging. For the SENSEVAL-2 dataset, the clas-
sifiers with SRL features consistently outperform
those without. However, for the MSC dataset, the
results of the nested cross validation showed that
the performance of the automatic classifiers with
the SRL features does not consistently outperform
those without the SRL features; the oracled classi-
fiers constructed without the SRL features actually
consistently outperformed those with the SRL fea-
tures.

The differences between the results obtained
from the two datasets make it difficult to conclude
categorically whether SRL can indeed help VSD.
However, a closer examination of the datasets re-
veals that errors in the output of the semantic role
labeler, the intransitivity of the verbs, unresolved
anaphors, and verbal multiword expressions (ver-
bal MWEs) are the main reasons for the lack of
positive contribution from the SRL features.

Most of the verbs on which SRL features per-
formed poorly are intransitive, which means that
only one argument type semantic role is available
– the subject or the agent role, which mostly oc-
curs to the left of the verb. However, the feature
ranking algorithm showed that most of the useful
features occur to theright of the verb, which is
why SRL features tend to perform poorly on in-

transitive verbs.
The unresolved anaphors also limited the effec-

tiveness of SRL features because they carry almost
no disambiguation information, no matter which
semantic role they take, and they occur in a signifi-
cant number of sentences. The anaphor problem is
slightly more pronounced in the movie script cor-
pus, because its texts tend to describe consecutive
actions performed by the same actor(s) and involv-
ing the same objects in the scene, and therefore
anaphors tend to occur more frequently.

Verbal MWEs such astake off are not detected
as a single lexical item, and the verbs themselves
tend to have no suitable sense as far as WordNet is
concerned. However, they often occur more than
once in the data, and since the annotators were
forced always to pick at least one sense, these ex-
pressions tend to end up as noise in the data.

Finally, it is also possible that the lack of train-
ing data in the MSC corpus contributed to the poor
performance, since almost every verb in the MSC
corpus contains two or more senses which occur
less than twice.

7 Conclusions and Future Work

In this paper, we have presented our research on
using multi-semantic-role based selectional pref-
erences obtained from a state-of-the-art semantic
role labeler. We have shown that this particular
type of selectional preferences can indeed improve
the performance of verb sense disambiguation.
However, this improvement still depends on the
performance of the semantic role labeler, the tran-
sitivity of the verbs, the resolution of anaphors,
and the identification of verbal MWEs.

In future research, we hope to focus on integrat-
ing more competent anaphora resolution systems
and verbal MWE detectors into our existing VSD
framework, and investigating how to mitigate the
errors in the semantic role labeler.
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