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Abstract

This paper investigates whether multi-
semantic-role (MSR) based selectional
preferences can be used to improve the
performance of supervised verb sense dis-
ambiguation.  Unlike conventional se-
lectional preferences which are extracted
from parse trees based on hand-crafted
rules, and only include the direct subject
or the direct object of the verbs, the MSR
based selectional preferences to be pre-
sented in this paper are extracted from
the output of a state-of-the-art semantic
role labeler and incorporate a much richer
set of semantic roles. The performance
of the MSR based selectional preferences
is evaluated on two distinct datasets: the
verbs from the lexical sample task of
SENSEVAL-2, and the verbs from a movie
script corpus. We show that the MSR
based features can indeed improve the per-
formance of verb sense disambiguation.

I ntroduction

ignored source of disambiguation information for
verbs is the patterns of verb-argument structures.
In this paper, we will attempt to capture these pat-
terns through the use of selectional preferences.

In general, selectional preferences describe the
phenomenon that predicating words such as verbs
and adjectives tend to favour a small number of
noun classes for each of their arguments. For ex-
ample, the verleat (“take in solid food”) tends to
select nouns from to theNIMATED _THING class
as its EATER role, and nouns from the€DIBLE
class as itEATEE role.

However, it is possible to extend the concept
of selectional preferences to include nouns which
function as adjuncts to predicating words. For ex-
ample, the verlhit in the sentencé hit him with
my fistsstands for “deal a blow to, either with the
hand or with an instrument”, but in the senterice
hit him with a car it stands for “to collide with”,
with the only difference between the two instances
of hit being their manner modifiers. Intuitively, the
inclusion of verb adjuncts can enrich the semantic
roles (SRs) and provide additional disambiguation
information for verbs. Therefore, in the rest of this
paper, the concept of “semantic role” will include

Verb sense disambiguation (VSD) is the task ofboth the arguments and adjuncts of verbs.

examining verbs in a given context and specify- All the selectional preference based WSD sys-
ing exactly which sense of each verb is the mostems to date have only used the subject and di-
appropriate in that context. VSD is a subtask ofrect object of verbs as semantic roles, extracting
word sense disambiguation (WSD). Given a verlthe necessary argument structure via hand-crafted
sense inventory and a set of verb senses, VSD iseuristics (Resnik, 1997; McCarthy and Carroll,
essentially a classification task (Yarowsky, 2000).2003, inter alia). As a result, it is difficult to ex-

VSD has not received much attention in the lit-tend the selectional preferences to anything else.
erature of WSD until recently. Most of WSD sys- However, with recent progress in Semantic Role
tems disambiguate verbs in the same way as nounsabelling (SRL) technology, it is now possible to
using mostly collocation based features, and thigbtain additional semantic roles such as the indi-
has led to rather poor VSD performance on cor+ect object of ditransitive verbs and the locational,
pora such as BNSEVAL-2. One useful but often temporal and manner adjuncts.

Proceedings of the 2006 Australasian Language Technology Workshop (ALTW2006), pages 139—-148.
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Given the lack of research in VSD using multi- sian prior. Different values for the Gaussian prior
semantic-role based selectional preferences, theften lead to significant differences in the classi-
main contribution of the work presented in thisfication of new data, motivating us to include the
paper is to show that it is possible to use thetuning of the Gaussian prior in VSD framewadtk.
multi-semantic-role based selectional preferences The tuning of the Gaussian prior is performed in
extracted using the current state-of-the-art SRIconjunction with the feature selection. The CV for
systems to achieve a certain level of improvemeneach feature set is performed multiple times, each
for verb VSD. We also give detailed descriptionstime with a different parameterisation of the Gaus-
for all the features, feature selection algorithmssian prior. Therefore, the final classifier incorpo-
and the tuning of the machine learner parametersates the best combination of feature set and pa-
that we have used in the construction of our VSDrameterisation of the Gaussian prior for the given
system, so that our system can be easily repradataset.
duced.

The remainder of this paper is organized as fol3 Féatures Types

lows: we first introduce the framework for con- gjnce selectional preference based WSD features
structing and evaluating the VSD systems in Seczq general WSD features are not mutually ex-

tion 2; we then give detailed descriptions of a"clusive of each other, and it would be less con-
the feature types that we experimented with duryncing to evaluate the impact of selectional pref-
ing our research in Section 3; Section 4 iNtro-grence hased features without a baseline derived
duces the two datasets used to train and evaluajgym general WSD features, we decided to include
the features; the feature selection algorithms arg  mper of general WSD features in our exper-
presented in Section 5; the results of our experijments, The sources of these features include:
ments are prese_nted in Section 6; and finally Weart-of-Speech tags extracted using a tagger de-
conclude in Section 7. scribed in Gimnez and Mrquez (2004); parse trees
extracted using the Charniak Parser (Charniak,
2000); chunking information extracted using a sta-
There are three components in our VSD Framelistical chunker trained on the Brov_vn Corpus and
work: extraction of the disambiguation featuresth® Wall Street Journal (WSJ) section of the Penn
from the input text (feature extraction), selection réebank (Marcus et al., 1993); and named enti-
of the best disambiguation features with respect t4/€S €xtracted using the system described in Cohn
unknown data (feature selection), and the tuningt &+ (2005).

of the machine learner’'s parameters. Since featurg_1 General WSD Features

extraction is explained in detail in Section 3, we _
will only disscuss the other two components here.1N€re ares broad types of general WSD features:

Within our framework, feature selection is per- n-gram based features of surrounding words a”‘?'
formed only on the training set. We first use theWordNet houn synsets, parse-tree-based syntactic

feature selection algorithms described in Section deatures, and non-parse-tree based syntactic fea-

to generate different feature sets, which are used fyres.

generate separate datasets. We then perform crogg.1  N-gram based features

validation (CV) on each dataset, and the feature g fo|10wingn-gram based features have been
set with the best performance is chosen as the fExperimented with:

nal feature set.

The machine learning algorithm used in ourBagof Words Lemmatized open class words in
study is Maxium Entropy (MaxEnt: Berger et the entire sentence of the target verb. Words that
al. (1996%). MaxEnt classifiers work by mod- occur multiple times are only counted once.
elling the probab.lllly Q|str|but|on of Iabels.W|t'h re- Bag of Synsets The WordNet (Fellbaum, 1998)
spect to disambiguation features, the distribution

. synsets for all the open class words in the entire
of which is commonly smoothed based on a Gaus-y P

2 VSD Framework

- 2\We experimented with the following settings for the stan-

We used Zhang Le’s implementation which is avail- dard deviation (with a mean of 0) of the Gaussian prior in all
able for download athttp://honmepages.inf. ed. of our experiments:0.1, 0.5, 1.0, 5.0, 10.0, 50.0, 100.0,
ac. uk/ s0450736/ maxent t ool ki t. htm 500.0, 1000.0.
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sentence; hypernyms for nouns and verbs are alssurrounding POS Tags The Union of thel eft
included. POS-tags andRight POS-tags features.

Bag of POS Tags The POS tag of each word It may seem redundant that for the same win-

within a window of 5 words surrounding the target dow size, the Surrounding-Words (POS) features
verb, paired with its relative position and treated 3Se the union of the Left-Words (POS) features
a separate binary feature. and the Right-Words (POS) features. However,
Bag of Chunk Tags The chunk tags (in this redundancy of features makes it convenient

Inside-Outside-Beginning (IOB) format: Tjong to investigate the disambiguation effectiveness of

Kim Sang and Veenstra (1999)) surrounding andhe word collocations before_ and after the target
including the target verb within a window of 5 verb, as well as the syntactic pattern before and
words, paired with their relative positions. after the target verb. Furthermore, we have also

experimented with different window sizes for the
Bag of Chunk Types The chunk types (e.g. NP, Surrounding-Words (POS), Left-Words (POS) and
VP) surrounding and including the target verbRight-Words (POS) to determine the most appro-
within a window of 5 words. priate window sizé.

Bag of Named Entities The named entities in 3.1.2 Parsetree based features
the entire sentence of the target verb. The parse tree based syntactic features are in-

Left Words Each lemmatized word paired with Spi_“?‘?‘ by research on verb subcat(_egorization ac-
its relative position to the left of the target verb C]UIS.ItIOI’I such as Korhonen a.nd Preiss (2003)’ aqd
within a predefined window. are intended to capture the differences in syntactic

patterns of the different senses of the same verb.
Right Words Each lemmatized word paired Given the position of the target verhin the parse
with its relative position to the right of the target tree, the basic form of the corresponding parse tree
verb within a predefined window. feature is just the list of nodes afs siblings in
] ] the tree. Figure 1 shows the parse tree for a sen-
Surrounding Words  The union ofL&ft Words  ance containing the ambiguous vesall. Given
andRight Words features. the position of the target vertalled in the parse
Left Words with Binary Relative Position tree, th_e basic form of the features that can be cre-
ated will be(N P, PP). However, there arg ad-
ditional types of variations that can be applied to
the basic features. The first variation is to include
Right Words with Binary Relative Position  the relative positions of the sibling node types as
Each lemmatized word and its binary position topart of the feature: this variation will change the
the right of the target verb within a predefined win-basic feature focall to {(1, NP), (2, PP)}. The
dow. second variation is to include the binary relative
] ) ] , direction of the siblings to the target verb as part of
Surrounding Words with Binary Relative PO-  yhe feature, i.e. is the sibling to the left or right of

stion  The union ofLeft Words with Binary 4 target verb: this variation will change the basic
Position andRight Words with Binary Position ¢+ re forcall to {(right, NP), (right, PP)}.

features. The third variation is to include the parent node

Left POStags The POS tag of each word to the YP€ as part of the sibling node type to add more

left of the target verb within a predefined window, information in the syntactic pattern. ~Figure 2
paired with its relative position. shows what the original parse tree looks like when

every nonterminal is additionally annotated with
Right POStags The POS tag of each word to its parent type. Since the third variation is com-
the right of the target verb within a predefined win- patible with the first two variations, we decided to
dow is paired with its relative position. combine them to create the following parse tree

Each lemmatized word and its positfoto the left
of the target verb within a predefined window.

3All words to the left of the target verb are given the “left” “In the ranking based evaluation method described in Sec-
position, and all the to the right of the target verb are givention 5, only the Surrounding-Words (POS) feature types with
the “right” position. the largest window size are used.
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based features: and arrange them in their original order, and treat
this list as a single binary feature.

For a clausal node which is not an SBAR, but
has a single non-terminal child node, we first ex-
Type2 Original sibling node types with relative tract the type of this child node, then we ex-
binary directions. tract the list of node types for the children of this

child node. The tuple of (child-node-type, list-of-
Type 3 One level of parent-node-annotated sib-grandchildren-node-types) is then treated as a sep-
ling node types with relative positions. Us- arate binary feature.

ing the call example, this feature will be )
{(1,VP-NP), (2, VP-PP)}. 3.1.3 Non-parsetree based syntactic features

There are3 types of non-parse-tree based syn-
Type4 One level of parent-node-annotated Sibactic features:
ling node types with relative binary directions. _
Using the call example, this feature will be Voice of theverb The voice of the target verb
{(right, VP-NP), (right, VP-PP)}. (active or passive).

b_Quotativ&e Verbs that appear in directly quoted
speech have a greater likelihood of occurring in
the imperative and losing the surface subject, e.g.
Type 6 Two levels of parent-node-annotated “Call the police!”. We therefore include this as a
sibling node types with relative binary directions. standalone feature.

O[Additional Chunk based features A number

t f th t f I tacti o
On top of the 6 types o purely syntactic base ?f additional chunk based features are also used
parse tree features, there is an additional type g : .
to capture the phrase level localized syntactic

parse tree based feature designed to capture the .
and collocation patterns from the context to the
verb-argument structure of the target verb. The . " .
. right of the target verb within a window of be-
type of features only cover four particular types .
. . ) tween 3 and 10 chunks. For example, using a
of parse tree nodes which are immediately after

the pre-terminal node of the target verb. The fourwmdow of 7, for the verbkick in the sentence:

) /PRP]np [Kicked/VBD]yp [him/PRP]\p [out/IN
tc)fsﬁia?fnngse tree nodes are: ADVP, NP, PP angf/”\l]pp [the/DT door/NNEp [through/IN]pp

For an ADVP node, we extract its head adverlWNiCh/WDT]p [he/PRPRp [came/VBDLp, the

H_ADV, and treat the tuple ofDVP, H_ADV) flr_st 7 chunks after the chunk that contaikick _
. will be used for feature extraction. These addi-
as a separate binary feature.

) . tional chunk based features are:
For an NP node, we first extract its head nouns,

then replace each head noun with its WordNeChunk-type-sequence The concatenation of all
synsets and the hypernyms of these synsets, artde relevant chunk types. For example, us-
treat each of these synsets as a separate binary féag the abovekick example, this feature will be
ture. In order to cover the cases in which the heatNP_PP_NP_PP_NP_NP_VP.
noun of a NP node is a quantity noun, eagglass o .
of water, the head nouns of PPs attached to the ngegular expresson  (RE) repr%ntatlop
. of the chunk types The consecutive
nodes are also included as head nouns. Further; . .
. o identical chunk types in theChunk-type-
more, head nouns which are named entities identi- uence feature meraed into a sinale svmbol
fied by the system described in Cohn et al. (2005 9 gie sy '
are replaced by appropriate WordNet synsets or example, the chunk-type-sequence of
i ) " _NP_PP_NP_PP_NP_NP_VP will be represented

For a PP node, we first extract its head preposi-
. - asNP_PP_NP_PP_NP+_VP.
tion, then we extract the head noun synsets in the
same way as the NP node, and finally we combind€irst word of each chunk with the chunk type
each synset with the head preposition to form ahe list that contains the first word of each
separate binary feature. chunk will be treated as a separate binary fea-

For a clausal node which is an SBAR, we ex-ture. With thekick example, this feature would

tract the list of node types of its direct children behim_out_the_through_which_he_came.

Typel Original sibling node types (zero level of
parent node annotated) with relative positions.

Type5 Two levels of parent-node-annotated si
ling node types with relative positions.
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The slender handsome fellow was
Called
/\
Dandy Brandon by
the other slaves

Figure 1: Basic parse tree feature example

Sl
S_NP) . S_VP|
The slender handsome fellow was VP_VP
Called> VP_PP
S
Dandy Brandon by
the other slaves

Figure 2: One level parent annotated parse tree

Last word of each chunk with the chunk feature. Using the abovidck example, this fea-
type The list that contains the last word of ture will be: (NP, PRP)_ (PP, out) (NP, NN)_(PP,
each chunk will be treated as a separate feahrough)_(NP, which)_(NP, PRP)_(VP, VBD).
ture. With thekick example, this feature would

be him_of _door _through_which_he_came. 3.2 Selectional Preference Based Features

First POS tag of each chunk with the chunk \2/\(/)% used the ASShEF?Tsystem (Hlaci?glu e';] al.,
type The list that contains the first POS tag 4) to extract the semantic roles from the tar-

of each chunk will be treated as a separate fe-Jet sentences. The following selectional prefer-
ture. With thekick example, this feature would be ence based features have been experimented with:

PRPIN.DT.IN.WDT_PRP.VBD. WordNet synsets of the head nouns of the SRs

For each semantic role, the WordNet synsets of its

Last POS tag of each chunk with the chunk ) : i
shead noun, paired with the corresponding seman-

type The list that contains the last POS tag of .
each chunk will be treated as a separate fediC M0le-
ture. With thekick example, this feature would

be PRP.IN_NN.IN.WDT_PRP.VBD. Semantic rol€'s relative positions These fea-

tures are designed to capture the syntactic patterns
Chunk-type-sensitive combinations This fea- of the target verb and its semantic roles. The rel-

ture is created by merging the chunk types andptive position is set up such that the first semantic

some additional information associated with the'le to the left of the target verb will be given the

chunks. If a chunk is a PP. then the head prepoposition of—1, and the first one to the right will
sition will also be part of the feature; if a chunk P& given the position of-1.

is an NP and the head word is a question Worq_emmatized head noun of each semantic role

(who, what, when, how, whem why), the head _." . )
. . . Similar to the synset features, each semantic role
word itself will be part of the feature, but if the . . o
is also paired with its head noun.

head word is not a question word, its POS tag will
be part of the feature; if a Chun_k is a VP, then SWe used version 1.4b of this system which can be down-
the POS tag of the head verb will be part of theloaded fromht t p: / / oak. col or ado. edu/ assert/
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Preposition of the adjunct semantic role If is deemed necessary. Due to the high numbers
there is an adjunct semantic role which is also af individual binary features and feature types,
prepositional phrase, the preposition is also paireit would be impractical to generate all possible

with the semantic role. combinations of the individual features or feature
) types. Therefore, we propose two automatic fea-
4 Evaluation Datasets ture selection algorithms here: the individual fea-

We used two datasets based on distinct text gerfré ranking algorithm and feature type coverage

res to examine the effectiveness of the multi-algorithm.
semantic-role based selectional preferences: thgl
verb dataset from the English lexical-sample sub- _ . _
task of ENSEVAL-2, and a manually sense taggedTh's algorithm is based on the work of Baldwin
movie script corpus (MSC).The SENSEVAL- and Bond (2003) and works by first calculating the
2 data contains 28 polysemous verbs, and 35eiiformation gain (IG), gain ratio (GR) and Chi-
training instances. The movie script corpus conSduare statistics (Chi) for each blnary_ feature as
tains 8 sense labelled verbs and 538 training in3 Separate scores. Then, each score is separately
stances. Table 1 outlines the composition of th¢!Sed to rank the features in a way such that the
movie script corpus dataset. greater the score, the higher the rank. Features
The sense tagged movie script corpus is impor‘-’VhiCh have the same value for a particular score
tant because it is an integral part of a broader NLFr€ given the same rank. Once individual ranks
project which aims to generate computer animahave been determined for each feature, the ranks
tion by interpreting movie scripts. Since most of themselves are summed up and used as a new
the actions in movie scripts are described by verbsSc0re which is then used to re-rank all the features
we believe it is necessary to investigate whethePn€ last time. This final ranking will be used to
knowing the senses of the verbs can improve th@€rform the feature selection.
accuracy of the animation generation. Once the final ranking of the features has been
The movie script corpus was hand-tagged by:alculated, we then generate separate feature sets
two annotators according to WordNet 2.0 sensed/Sing the topV percent ranked features, vgheNe
and the differences in the annotation were arf@nges from to 100 with an increment 05.” We
bitrated by a third judge. Compared with the evaluate these feature sets in Section 2.
SENSEVAL-2 data, wh|ch comes frgm thg Brown 5 11 Feature Type Coverage Algorithm
Corpus, the sentences in the movie script corpus The aim of this algorithm is to use the minimal
tend to be shorter because they describe certain
actions to be performed in the %ovie Examplenumber of featurdypes to generate the best per-

. . . “formance. It works in the following way. First,
sentences from this corpus include the following: we assign a unique ID to every training instance

1. A rubber dart:its the glass and drops into a in the original training set. We then create a sep-

trash can next to the door . arate dataset for each individual feature type (e.g.
Bag Of Words, Left Words, etc.) and evaluate

2. Neo slowly sets down his duffel bag andthem as per Section 2. Since the single-feature-
throws open his coat, revealing an arsenalyped datasets are all created from the same orig-
of guns, knives, and grenades slung from ang| training set, we can propagate the IDs of
climbing harness. the original training instances to the testing in-

stances in the held-out sets of the single-feature-

typed datasets. Furthermore, as the CVs are strati-

5 Feature Selection Algorithms fied, we can calculate the accuracy of each feature

type with respect to each training instance. For

It has been observed that combining certain feaéxample, suppose theth training instance for

tures together can lead to a decrease in classﬁ{he verbhit was correctly classified in the held-

cation accuracy, hence a feature selection Process + <ot by the classifier trained with only ther b-

®The entire MSC dataset contains more than 250 movieargument structure features, then the accuracy
scripts, but due to limited resources, only 3 scriptswensse
tagged, and only 8 high frequency and highly polysemous "The top0% feature set is replaced by the majority-class
verbs were chosen for this study. heuristic

Individual Feature Ranking Algorithm

3. Morpheus tries tdook not sad.
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verb | Fred. in Sense Freq. in No. of Senses in Majority Inter Antoota
Tagged Corpus  entire corpus  Sense Tagged Corpus  Class Ratidgreement

hit 32 1770 6 .438 .828
lift 31 1051 4 .548 .807

look 164 19480 5 .884 963

pull 79 5734 7 410 744

stop 43 3025 4 .524 917

take 54 8277 14 .370 .679

throw 29 1940 6 379 724

turn 106 8982 10 .736 .953

Table 1: Movie script corpus details

of verb-argument structure feature type on this spect to the test data. More specifically, we col-
particular training instance would be0. With lected the following information for our evalua-
these training-instance-specific accuracies, we ddion:
fine thecoverage of a feature type as a mappin .

soverag ype as a mapping Fully Oracled Using both oracled feature sets
from training instance IDs to their individual ac- . .

. . and oracled Gaussian prior values.

curacies. We also use the sum of the accuracies
of the individual data instance to assess the overafSOracled Using oracled feature sets but auto-
coverage of particular feature type with respect tamatically selected Gaussian prior values.
a training set.

In order to assess the coverage of combine(]}/I axent Oracle;l Usllng gutom_ancall_y sellected
feature types, we define an additional procedurdSature sets and oracled Gaussian prior values.

called combine for merging two coverages to- Fylly Auto. Using both automatically selected

gether to produce a new coverage. The details Gkature sets and Gaussian prior values.
this algorithm are shown in Algorithm 1.

On top of the coverages, we also calculate thé'l! Features Including all features and using
applicability of each feature type as the percent_automatlcally selected Gaussian prior values.

age of held-out instances for which one or more ) )
features of that particular type can be extracted. 1aPles 2and 3 respectively summarize the eval-

The final phase of the feature selection algorithn/@tion results on the datasets with and without

is a process of greedily combining the cover-SRL features.

ages of feature types together until the coverage Itcgn be obs_erved that the impact of the feature
plateaus to a local maximum. This process is deS€l€ction algorithms on theESSEVAL-2 dataset
scribed in Algorithm 2. is similar to that on the MSC dataset. The fea-

ture ranking algorithm seems to perform notice-
6 Resultsand Discussion ably worse than having no feature selection at all,

but the coverage algorithm seems perform mostly
For the &NSEVAL-2 data, the feature selection al- petter. This shows that feature selection can be a
gorithms were applied on the 10-fold cross vali-yseful process irrespective of the corpus.
dated training set and the chosen features type and The disappointing performance of the feature
the Gaussian smoothing parameters were appliegnking algorithm on both datasets is caused by
to the test set. For the movie script corpus, thehe mismatch between the training and the testing
feature selection algorithms were applied to 5-folddata. Recall that this algorithm works by selecting
nested cross validation of the entire dataset. The fihe topV percent of features in terms of their dis-
nal cross validation results are reported HeFair-  ambiguation power. Since the feature selection is
thermore, in order to measure the usefulness of thenly performed on the training set, the chosen fea-
feature selection algorithm, we have also inClUdEdureS could be absent from the test set or have dif-
results obtained using “Oracled” feature sets angerent distributions with respect to the verb senses.
Gaussian prior values which were tuned with re-verb-by-verb analysis for this algorithm revealed

8n nested cross validation, the training set of each fold is  °The majority class baseline for the MSC dataset is gath-
further divided into a sub-training and sub-held-out satl a ered from the primary held-out sets of the nested CV, there-
the feature selection and Gaussian smoothing parameters féore it is potentially different to the majority class of thetire
the proper held-out sets are tuned on a fold-by-fold basis. MSC dataset.
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Algorithm 1 The algorithm oftombine which merges two coverages to produce a new coverage.

NoOUhAWN R

: Let! be the set of IDs of the training instances

: LetCoverage andCoveragg be the two coverages to be merged

: LetNewCoveragde the combined coverage Gbveragg andCoveragg
:forieIdo

NewCoveragg] = max(Coverage|i], Coveragg[i])

: end for

. ReturnNewCoverage

Algorithm 2 The incremental process of determining the final set of fedigpes

1: LetI be the set of IDs of the training instances
2: CurrentCoverage= {(i — 0.0)|¢ € I}
3: Let F' be the set of feature types
4: Combinécoverageg, coveragg) = {(¢ — maxz(coverage|[s], coveragg[i]))|: € I}
5: while Truedo
6: NCs+ {} > Initialize a temporary list to hold the new combined covesag
7: for f; € F do
8: NewCoverage« CombingCurrentCoverageCoverageg, )
9: Add NewCoveraggto NCs
10: end for
11: Let NewCoverage € NCs be the one with highest overall coverage. > Break tie with the lowest applicability.
12: if CurrentCoveragédias the same overall coverageNmwCoveragethen
13: Break
14: end if
15: CurrentCoverage— NewCoverage
16: end while
Individual Feature ranking Feat. Coverage|| Majority
Dataset Fully FS Maxent  Fully All Maxent  Fully Class
Oracled Oracled Oracled Auto. FeaturgsOracled Auto.|| Baseline
SENSEVAL-2 .623 615 .556 .540 574 .588 .583 .396
MSC 774 743 .602 577 .690 712 7127 .617

Table 2: Disambiguation accuracies with SRL featurdadicates significantly higher performance than
the all features baseline (pairedest,p > 90%))

Individual Feature ranking Feat. Coverage|| Majority
Dataset Fully FS Maxent  Fully All Maxent  Fully Class
Oracled Oracled Oracled Auto. FeaturgsOracled Auto.|| Baseline
SENSEVAL-2 .606 .595 544 .529 .558 .583 576 .396
MSC .780 747 .554 .532 714 721 .693 .617

Table 3: Disambiguation accuracies without SRL features
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that for most verbs, there was very little correla-transitive verbs.
tion between the training data and the test data in The unresolved anaphors also limited the effec-
terms of the value ofV verses the disambiguation tiveness of SRL features because they carry almost
performance. This is why this algorithm consis-no disambiguation information, no matter which
tently selected suboptimal feature sets which resemantic role they take, and they occur in a signifi-
sulted in the poor performance. This mismatchingcant number of sentences. The anaphor problem is
problem is especially severe for the MSC corpusslightly more pronounced in the movie script cor-
which contains many verb senses that occur onlyus, because its texts tend to describe consecutive
once. actions performed by the same actor(s) and involv-
On the other hand, the performance of the coving the same objects in the scene, and therefore
erage based algorithm tends to be similar to oRnaphors tend to occur more frequently.
better than that of using all the features. Recall Verbal MWEs such atake off are not detected
that this algorithm selects feature types in such as a single lexical item, and the verbs themselves
way that the coverage of the final feature set igend to have no suitable sense as far as WordNet is
maximized. As a result, even feature types whictconcerned. However, they often occur more than
performed poorly on the training set may be se-once in the data, and since the annotators were
lected as long as they performed well on somdorced always to pick at least one sense, these ex-
of the training instances that other features perpressions tend to end up as noise in the data.
formed poorly on. Therefore, the features chosen Finally, it is also possible that the lack of train-
by this algorithm are less likely to overfit the train- ing data in the MSC corpus contributed to the poor
ing data. performance, since almost every verb in the MSC
Overall, it can be observed that for both Corpus contains two or more senses which occur
datasets, most of our automatic classifiers outpeless than twice.
form the majority class baseline, which is very en-
couraging. For the &NSEVAL-2 dataset, the clas- 7 Conclusions and Future Work
sifiers with SRL features consistently outperform
those without. However, for the MSC dataset, thé" this paper, we have presented our research on
results of the nested cross validation showed thad{Sing multi-semantic-role based selectional pref-
the performance of the automatic classifiers witherénces obtained from a state-of-the-art semantic
the SRL features does not consistently outperforniol€ labeler. We have shown that this particular
those without the SRL features; the oracled classilYP€ Of selectional preferences can indeed improve
fiers constructed without the SRL features actuallyin® performance of verb sense disambiguation.

consistently outperformed those with the SRL feaH1OWever, this improvemen_t still depends on the
tures. performance of the semantic role labeler, the tran-

The differences between the results obtained ftivity of the verbs, the resolution of anaphors,

from the two datasets make it difficult to concludeanOI the identification of verbal MWEs. .
In future research, we hope to focus on integrat-

categorically whether SRL can indeed help VSD.,

However, a closer examination of the datasets rel'g More competent anaphora resolution systems

veals that errors in the output of the semantic role?Ind verba:(l MV\(le dete(?tor_s mtﬁ our eX|s't.|ng VS;]D
labeler, the intransitivity of the verbs, unresolved ramework, and investigating how to mitigate the

anaphors, and verbal multiword expressions (ver(_arrors in the semantic role labeler.

bal MWES) are the main reasons for the lack ofA K led ¢
positive contribution from the SRL features. cknowledgements
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