
Proceedings of the Australasian Language Technology Workshop 2005, pages 207–214,
Sydney, Australia, December 2005.

A Distributed Architecture for Interactive Parse Annotation

Baden Hughes
Department of Computer Science

and Software Engineering
The University of Melbourne

Victoria 3010, Australia
badenh@csse.unimelb.edu.au

James Haggerty, Saritha Manickam
Joel Nothman, James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

{j.h,jnothman,saritha}@student.usyd.edu.au
james@it.usyd.edu.au

Abstract

In this paper we describe a modular system ar-
chitecture for distributed parse annotation us-
ing interactive correction. This involves inter-
actively adding constraints to an existing parse
until the returned parse is correct. Using a
mixed initiative approach, human annotators in-
teract live with distributed ccg parser servers
through an annotation gui. The examples pre-
sented to each annotator are selected by an ac-
tive learning framework to maximise the value
of the annotated corpus for machine learners.
We report on an initial implementation based
on a distributed workflow architecture.

1 Introduction

Annotating sentences with parse trees is per-
haps the most complex and intensive linguistic
annotation. The time and expense of develop-
ing parsed corpora is almost prohibitive. As a
result there are only a small number of such cor-
pora, including the Penn Treebank (Marcus et
al., 1994), the German TiGer Corpus (Skut et
al., 1997) and more recently the LinGO Red-
woods Treebank (Oepen et al., 2002). These
corpora are also limited in size, typically around
one million words.

Unfortunately, the statistical approaches to
parsing which have been most successful rely
heavily on both the quality and quantity of an-
notated resources. Also, these approaches are
very sensitive to the statistical properties of the
corpus, and so a parser trained on one genre
may perform badly on another (Gildea, 2001).

Another major problem with parsed corpora
is that they must, at least to some extent, fol-
low a particular syntactic theory or formalism.
This is a major difficulty for two reasons: firstly,
it means we need separate annotated corpora
for each formalism; and secondly, it means that
comparing parser evaluations across formalisms
is difficult.

Fully automated conversion of parse trees be-
tween formalisms is difficult because each analy-
ses certain constructs in idiosyncratic ways. An
example is CCGbank (Hockenmaier and Steed-
man, 2002), a treebank of Combinatory Cate-
gorial Grammar (Steedman, 2000) derivations
which were converted semi-automatically from
the Penn Treebank trees. The result still re-
quired laborious editing to produce idiomatic
ccg derivations (Hockenmaier, 2003).

We intend to create a new corpus of ccg
derivations on a wide range of text. We face
three key problems: 1) selecting sentence to an-
notate which creates the most useful corpus for
statistical parsers. 2) maximising the annota-
tor efficiency and minimising error; 3) allowing
distributed annotators to share expertise.

The selection problem is addressed using ac-
tive learning (al). Active learning involves
computing which training instances provide the
most new information to one (or more) machine
learners (Cohn et al., 1995; Dagan and Engel-
son, 1995). The annotators become oracles an-
swering specific queries posed by the learners.

The annotation problem is addressed by in-
teractive correction of the output of our statis-
tical ccg parser. This is similar to the dis-
criminant strategy employed for Redwoods an-
notation (Oepen et al., 2002) but generalises to
grammars where parse enumeration is infeasi-
ble. Annotators interactively add constraints
to the parser which returns the most probable
parse satisfying the constraints.

The distributed expertise problem is ad-
dressed using a workflow manager. Annotators
will be able to add comments and queries to
derivations and have them sent to (potentially
remote) experienced annotators for verification.
The workflow manager will also handle schedul-
ing for the active learning infrastructure.

This paper describes the architecture and ini-
tial implementation of a system which addresses
these problems for distributed parse annotation.

207



The WSJ is a publication that I enjoy reading

NP/N N (S [dcl]\NP)/NP NP/N N (NP\NP)/(S [dcl]/NP) NP (S [dcl]\NP)/(S [ng]\NP) (S [ng]\NP)/NP

Figure 1: Example sentence with ccg lexical categories

2 Related Work

Since annotating parse trees is a significant bot-
tleneck in nlp there have been several attempts
to make the process more efficient. In this
work we exploit two approaches: using choice
points to select the correct parse and using ac-
tive learning to select sentences to parse.

A discriminant is a property that distin-
guishes between a set of interpretations. They
can be designed for linguistic non-experts
(Carter, 1997). In the Redwoods project, the
annotator is presented with discriminants on
the trees themselves which eventually lead to
the correct hpsg parse (Oepen et al., 2002).
These discriminants are calculated from the
enumerated set of all parses. Unfortunately, our
automatically extracted ccg grammar produces
far too many derivations (billions) for enumer-
ation to be feasible.

Baldridge and Osborne (2004) demonstrate
how active learning (al) can be used to signif-
icantly reduce the annotation cost for annotat-
ing text with hpsg parses. They compare ran-
dom selection with approaches based on uncer-
tainty sampling (Cohn et al., 1995) and com-
mittee based sampling (Dagan and Engelson,
1995) and demonstrate a reduction in annota-
tion effort of 72%. A key point that Baldridge
and Osborne identify is that each sentence can-
not be treated as equally difficult to annotate.
Tang et al. (2002) also evaluate al on statisti-
cal parsing and find the total cost of annotation
can be reduced to one third. Finally, Becker et
al. (2005) compares bootstrapping techniques
including al for developing new named entity
corpora.

Formally introduced in Day et al. (1997),
mixed initiative annotation (where the division
of labour between computational facilities and
human effort is coordinated for increased ef-
ficiency) has become an increasingly common
methodology for the preparation of large cor-
pora. Typically however, mixed initiative ap-
proaches have largely decoupled human and ma-
chine effort, even for larger scale tasks.

Extending the mixed initiative model specifi-
cally to a distributed environment, Hughes and
Bird (2003) offer a model for the type of solu-
tion we implement here. Additionally, the ar-

chitecture advocated by Curran (2003) allows
us flexibility in designing individual components
of this system independently, and then mar-
shalling them into a single application instance.

Experiments with distributed NLP tasks of
building n-gram language models (Hughes et
al., 2004a) and generalised textual indexing and
linguistically motivated retrieval (Hughes et al.,
2004b) are broadly indicative of other work in
this area. To date, however we are not aware
of any work in this vein specifically involving
mixed initiative annotation.

3 Combinatory Categorial Grammar

Combinatory Categorial Grammar (Steedman,
2000) is a type-driven lexicalized theory of
grammar based on categorial grammar. Al-
most all of the grammatical information in
ccg is represented in the categories assigned to
each word, which are either simple atomic cat-
egories (e.g. NP) or complex functor categories
(e.g. (S [dcl ]\NP)/NP a transitive declarative verb).
An example sentence with lexical categories is
shown in Figure 1. These categories are com-
bined together according to a small number of
combinatory rules.

The set of these lexical categories is ob-
tained from CCGbank (Hockenmaier and Steed-
man, 2002; Hockenmaier, 2003), a corpus
of ccg normal-form derivations derived semi-
automatically from the Penn Treebank. The
category set consists of those category types
which occur at least 10 times in sections 2-21
of CCGbank, which results in a set of 409 cate-
gories. Clark and Curran (2004a) demonstrates
that this relatively small set has high coverage
on unseen data and can be used to create a ro-
bust and accurate parser. In order to obtain se-
mantic representations for a particular formal-
ism, only 409 categories have to be annotated.

3.1 CCG Parsing
In our system we are using the c&c ccg parser
(Clark and Curran, 2004b), which uses a log-
linear model over normal-form derivations to se-
lect an analysis. The parser takes a pos tagged
sentence as input with a set of one ore more cat-
egories assigned to each word. A ccg supertag-
ger (Clark and Curran, 2004a) assigns the lexi-

208



cal categories, using a log-linear model to iden-
tify the most probable categories. Clark and
Curran (2004a) show how dynamic use of the
supertagger — starting off with a small number
of categories assigned to each word and gradu-
ally increasing the number until an analysis is
found — can lead to a highly efficient and ro-
bust parser.

The parser uses the cky chart-parsing algo-
rithm from Steedman (2000). The combina-
tory rules used by the parser are functional ap-
plication (forward and backward), generalised
forward composition, backward composition,
generalised backward-crossed composition, and
type raising. There is also a coordination rule
which conjoins categories of the same type.

3.2 CCG Supertagging
Lexicalised grammar formalisms, such as ltag
and ccg, assign one or more syntactic struc-
tures to each word which are then manipulated
by the parser. Supertagging was introduced for
ltag to increase parsing efficiency by reducing
the number of structures assigned to each word
(Bangalore and Joshi, 1999).

The parser model parameters are estimated
using a discriminative method, that is, one
which requires statistics across all incorrect
parses for a sentence as well as the correct parse.
Since an automatically extracted ccg gram-
mar can produce an extremely large number of
parses, the use of a supertagger is crucial in lim-
iting the total number of parses for the training
data to a computationally manageable number.

The supertagger is also crucial for increas-
ing the speed of the parser. We have shown
that spectacular increases in speed can be ob-
tained, without affecting accuracy or coverage,
by tightly integrating the supertagger with the
ccg grammar and parser (Clark and Curran,
2004a). To achieve maximum speed, the su-
pertagger initially assigns only a small num-
ber of ccg categories to each word, and the
parser only requests more categories from the
supertagger if it cannot provide an analysis.
Clark et al. (2004) has demonstrated that an-
notating new data at just the lexical category
level can be enough to significantly improve the
performance of a parser on a new domain.

3.3 Interactive Correction
For a given sentence, the automatically ex-
tracted grammar can produce a very large num-
ber of derivations. Clark and Curran (2004b)
describes how a packed chart can be used to

efficiently represent the derivation space, and
also efficient algorithms for finding the most
probable derivation. Unfortunately, this mas-
sive derivation space means it is not possible to
enumerate all parses, so the discriminant strat-
egy for interactive annotation outlined previous
is infeasible.

We therefore introduce the idea of interactive
correction where the parser is given a number of
constraints by the annotator. Rather than enu-
merate the parse, the process only involves find-
ing the most probable parse that satisfies the
expressed constraints. This can be performed
efficiently as part of the dynamic programming
algorithm which finds the highest probability
derivation.

Given that the ccg categories contain so
much information we expect that it will only
require annotators to constrain the lexical cat-
egories on a few words to reach a correct parse.

4 Example Use Case

The annotation process begins by the annotator
requesting a sentence to annotate. The active
learning component determines which sentence
from a large corpus of raw sentences may pro-
vide the most new information if it were to be
annotated. al can be very computationally in-
tensive process and so will only occur after a
given number of sentences have been annotated.
The al component will return a queue of sen-
tences that then scheduled to be annotated.

The annotator will receive the top sentence on
the queue along with the most probable deriva-
tion for that sentence. They can add the follow-
ing constraints to a given sentence:

force a specific lexical category
ban a current lexical category
ban a current non-leaf category
force a specific chart span
ban a current chart span

Adding one (or more) new constraints will cause
the derivation to be returned which satisfies the
existing and new constraints (if such a deriva-
tion exists). This process continues until the
correct derivation is reached and the parse is
checked in as correct. Once enough new an-
notated sentences have been completed the al
component regenerates a new queue of sentences
based on the retrained statistical parser model.

An alternative case is that the annotator is
not sure about the correct derivation for the sen-
tence. They can then annotate the derivation

209



Visualization 
and Analysis

Workflow 
Management

Computational 
Management

Messaging

Active Learning

Grid

Messaging

User Management

Task Queue

Figure 2: System Architecture

with a comment/question and it will be sched-
uled on the queue for other more experienced
annotators. The experienced annotator will see
the constraints and the comments added by the
original annotator. They can make a decision
or propagate it to some other annotator. Once
a decision has been reached the information is
returned to all annotators. This process is han-
dled by the workflow manager.

5 System Architecture

The system architecture for distributed anno-
tation and parsing with active learning can be
seen in Figure 1. The Visualization and Anal-
ysis module provides the end user interface by
which a human annotator can review and re-
vise the parser output. The actual content ren-
dered by this module is provided by the Work-
flow Management module.

The Workflow Management module has three
main roles: first to interact with the Visualiza-
tion and Analysis, providing parses to be visu-
alised and refined; second to manage the user
and tasks in the process of analysis; and third
to interact with the Computational Manage-
ment module by instantiating the active learn-
ing framework for incremental parsing of the
corpus data, and subsequent grid execution.

The Computational Management module has
two sub-modules. The Active Learning sub-
module allows for incremental application of re-
fined parses as training data for subsequent iter-
ations of the parser. The Grid sub-module han-
dles low level execution including the queuing,
dispatch and execution of analysis tasks, and
fetching the results from the distributed com-
putation environment.

Having described the high level architecture
of the system, we now turn to an in depth dis-
cussion of each of the components in turn.

6 Visualization and Analysis Module

The visualisation gui is implemented in wx-
Python (Dunn, 2005), an extension of the cross-
platform gui toolkit wxWidgets (Smart et al.,
2005) for Python. wxWidgets is particularly no-
table for its use of native graphical components
for a given operating system platform, allowing
the interface a native look and feel when run on
Windows, Mac or Linux environments.

Both the gui and the export to file function-
ality are built on a flexible cross-platform code
base. As can be seen in Figure 3 an initial im-
plementation already succeeds in displaying the
ccg parser output in a user-friendly form simi-
lar to that used by (Steedman, 2000) and widely
adopted as a standard format.

To facilitate the re-use of the rendered parse
tree, our gui uses the ReportLab Toolkit (Rep,
2005) to facilitate export to common vector
graphics formats such as PDF, PostScript, PNG
and SVG. These are useful for inclusion in pub-
lications and presentations.

By using basically the same rendering code,
consistent output is provided to the gui and the
export formats, including plain-text. Each pro-
vides a Canvas object whose role is simply to
provide metric information for displaying text
on that output device, and then to place the
text at given locations. All calculations for po-
sitioning text nodes are done external to the
canvas, so new output formats can easily be sup-
ported. Similarly, if a user selects a change in
font-styling, this is reflected in all graphical ex-
port formats and on-screen.

The graphical interface provides some inter-
activity in order to assist a user in viewing,
manipulating and annotating a parsed sentence
Most importantly, an annotator can change or
constrain the available categories for sentence

210



Figure 3: Screenshot from gui

constituents. As soon as these constraints are
added, they are passed back in real-time to the
Workflow Management module, and the gui is
updated to reflect the results of those changes.
Thus, in almost all cases, correct parses can be
generated without the need for the user to la-
boriously construct an entire derivation.

To simplify the viewing of large parse trees,
a user has the facility to ‘collapse’ chosen sec-
tions of the tree with a simple point-and-click
operation. Hiding most collapsed words from
view and only showing the derived category can
significantly reduce the horizontal and vertical
space occupied by the parse image. This feature
is particularly useful when an annotator needs
to focus on a particular section of a given parse:
once a certain partial derivation is checked, it
may be collapsed and will remain fixed there
through other parse modifications.

Collectively these features should make the
job of annotators far less painful. The graphi-
cal rendering of the ccg parser’s output makes
the incorrect grouping of words obvious, and by
using the parser in collaboration with the user
as described above, annotating a sentence cor-
rectly will usually be a matter of seconds rather
than minutes.

7 Workflow Management Module

The basic workflow of the system is as follows.
Sentences are parsed from a corpus by the ccg

parser on the grid, results being added to re-
view stack. A user logs in and starts a session,
requesting the next review parse. The user re-
views parse, and either confirms parse, or mod-
ifies and submits a revised parse or promotes
the candidate parse to new reviewer. Accepted
parses are sent back to the active learner for
subsequent retraining of the ccg parser.

As mentioned earlier, the Workflow Manage-
ment module has two interfaces: one to the Vi-
sualization and Analysis module, and the other
to the Execution module; as well as an internal
user and task management function. We will
first discuss the latter, before returning to the
interfaces themselves. It is however, important
to note that the workflow here is analytical, as
distinct from computational.

7.1 User Management Sub-module

The user registry allows for the tracking of
user (i.e. annotator) names, together with cor-
responding passwords and user level attributes.
In addition, a log is kept of the activity of each
user, in particular annotation times, which are
useful for monitoring the effectiveness of the in-
teractive correction approach.

7.2 Task Queue Sub-module

The task queue sub-module is basically a parse
review queue contains the list of sentences pend-
ing review together with an user allocation, and

211



a parse/sentence status (pending, reviewed).

7.3 Interface to Visualization and
Analysis

To facilitate communication the Simple Object
Access Protocol (soap) (Gudgin et al., 2003)
has been used to implement a lightweight in-
terface. The soap implementation supports 5
basic functions:

• authenticate user implements a
lightweight user authentication proto-
col based on a username and password;

• submit accepted parse is used when the
current parse and constraints are accept-
able, and is parameterised by the sentence
ID, a parse ID, and the set of constraints
with any associated commentary.

• submit uncertain parse is used when the
current parse is not fully understood by the
user, and a second opinion is required. It
is is parameterised by the sentence ID, a
parse ID, and the set of constraints with
any associated commentary.

• get next parse is the stack retrieval
method, used to retrieve the next parsed
sentence in the individual user queue. It
returns a the next sentence ID, sentence,
parse ID, and set of constraints and associ-
ated commentary.

• get modified parse allows the user to get
a subsequent sentence and parse matching
a revised set of constraints. It takes a parse
ID and a set of constraints.

7.4 Interface to Computational
Management

Again to facilitate communication the Simple
Object Access Protocol (soap) (Gudgin et
al., 2003) has been used to implement a
lightweight interface between the Workflow
Management module and the Computa-
tional Management module. The soap
implementation supports 2 basic func-
tions: submit sentence for parsing and
get next sentence for review.

• submit sentence for parsing is used for
transferring the sentences from the re-
viewed sentences queue to the active learn-
ing framework; and

• get next sentence for review is used for
transferring the parsed sentences from the

active learning framework to the Workflow
Management module

8 Computational Management
Module

As mentioned earlier, the Computational Man-
agement Module consists of two further sub-
modules, one for active learning and the other
for computational grid interaction management.

8.1 Active Learning Sub-Module
Our implementation of active learning involves
a variety of differently parameterised instances
of the ccg parser, with the view that an evalu-
ation of each model will identify the best parse
and constraints for a given sentence.

This module is instantiated based on some
threshold - either time based (e.g. once every
24 hours) or queue based (e.g. when there are
100 modified parses). This asynchronous server
side component allows discontinuity between
the user-centric review process and the compu-
tational impact of large scale re-parsing.

Our active learner uses committee-based sam-
pling (Dagan and Engelson, 1995) using differ-
ing supertagging and parsing statistical models
as committee members. Where there are many
annotation options, the most popular alterna-
tives from the committee will be passed to anno-
tators to help select the correct annotation more
efficiently. This will minimise the cognitive load
of selecting between too many alternatives.

8.2 Grid Sub-Module
The purpose of the Grid component is to man-
age all aspects of interaction with the dis-
tributed computational environment in which
the parser itself is running. The Grid sub-
module handles low level execution including
the queuing, dispatch and execution of analy-
sis tasks, and fetching the results.

The experimental environment is setup with
compute infrastructure in Sydney and in Mel-
bourne. At the Sydney node, the system envi-
ronment is a cluster of 9 dual-cpu Linux ma-
chines running MPI middleware. At the Mel-
bourne node the system environment is a clus-
ter of machines running Linux, managed by
the NorduGrid Advanced Resource Connector
(ARC). On each node, the ccg parser is in-
stalled.

The ccg toolkit is installed on the respective
clusters and simply instantiated by the active
learning framework as threshold boundaries are
reached.

212



The Grid sub module selects the relevant
compute node for execution of the current parse
task. (In the simplest case, perhaps a round
robin approach to selecting the compute facil-
ity for subsequent re-parsing runs would appear
to be sufficient, although for more intensive hu-
man annotation sessions, batch mode parser ex-
ecution with probe-based load measurement is
probably desirable for a scalable and robust im-
plementation). A job description is then cre-
ated specific to the node requirements. The job
is then passed to the head node of the cluster.

9 Discussion

The previous sections describe an architec-
ture for distributed, computationally intensive,
mixed initiative linguistic analysis. We believe
this contribution is notable for a number of rea-
sons including:

• a completely modular systems architecture,
in contrast with tightly bound end-to-end
systems which typically dominate this ap-
plication space;

• coordinated yet distinctly decoupled com-
putational and human effort, allowing both
parties to contribute to the overall effort
with maximum efficiency;

• re-usable, open sourced components which
are sufficiently flexible to allow other inter-
ested parties to build from an established
base, rather than the ground up

• an instantiation of service oriented nlp via
open standards

We are motivated to modularise the overall
system as much as possible to allow maximum
flexibility for future extensions. In particular,
our selection of the ccg parser is relatively arbi-
trary; any parser should be able to be swapped
in for the ccg parser (e.g. an hpsg parser) with
the only overhead being support for paralleli-
sation and an api which can be functionally
mapped to our soap based interface. Corre-
spondingly, we envisage that the gui compo-
nent should be generalised sufficiently to allow
for the rendering of a variety of different parse
tree representations.

10 Status

At the time of writing the status of the compo-
nents required is as follows:

• Visualization and Analysis module

A prototype gui has been implemented
which can render ccg derivations in sev-
eral formats. Lexical categories can now be
modified in the gui and the parse regen-
erated directly with the new constraints.
This does not currently use soap for get-
ting next parse.

• Workflow Management module

The 7 soap methods (5 for Visualization
and Analysis module interface, and 2 for
Computational Management module inter-
face) are implemented as a cgi application
in Python. Basic user and task manage-
ment implemented.

• Computational Management module

The parameterisation and brokering frame-
work for grid execution is deployed in pro-
duction.

Production grids are operational (building
over existing infrastructure) at both Mel-
bourne and Sydney sites. The ccg parser
on these systems; in the Melbourne case,
the active learning framework can be in-
statiated by a web services / SOAP based
interface to NorduGrid’s native job broker-
ing system.

11 Conclusion

We have proposed an architecture for perform-
ing distributed annotation of ccg derivations.
This architecture attempts to solve three key
problems in the efficient preparation of large
scale NLP resources: 1) selecting sentence to
annotate which creates the most useful corpus
for statistical parsers. 2) maximising the anno-
tator efficiency and minimising error; 3) allow-
ing distributed annotators to share expertise.

We have attempted to address these prob-
lems using a combination of machine learning
techniques and grid computing infrastructure.
In particular, Active Learning will identify the
best sentences to annotate; interactive correc-
tion will make the most of our annotators time;
and our workflow manager will allow (even re-
mote) annotators to share their expertise more
effectively.

While our implementation is relatively imma-
ture at this point, we believe the architecture
proposed in this paper, along with the specific
components, will be able to be reused in multi-
ple contexts.

213



Acknowledgements

We would like to thank the anonymous review-
ers for their helpful feedback, and to David
Vadas and Toby Hawker for testing the ccg
gui. This work has been supported by the
Australian Research Council under Discovery
Project DP0453131.

References
Jason Baldridge and Miles Osborne. 2004. Active

learning and the total cost of annotation. In Pro-
ceedings of the EMNLP Conference, pages 9–16,
Barcelona, Spain.

Srinivas Bangalore and Aravind Joshi. 1999. Su-
pertagging: An approach to almost parsing.
Computational Linguistics, 25(2):237–265.

Marcus Becker, Ben Hachey, Beatrice Alex, and
Claire Grover. 2005. Optimising selective sam-
pling for bootstrapping named entity recognition.
In Proc. of the ICML-2005 Workshop on Learning
with Multiple Views.

David Carter. 1997. The treebanker: a tool for
supervised training of parsed corpora. In Proc.
of the Workshop on Computational Environments
for Grammar Development and Language Engi-
neering, Madrid, Spain.

Stephen Clark and James R. Curran. 2004a. The
importance of supertagging for wide-coverage
CCG parsing. In Proc. of the 20th COLING,
pages 282–288, Geneva, Switzerland.

Stephen Clark and James R. Curran. 2004b. Pars-
ing the WSJ using CCG and log-linear models.
In Proceedings of the 42nd Annual Meeting of the
ACL, pages 103–110.

Stephen Clark, Mark Steedman, and James R.
Curran. 2004. Object-extraction and question-
parsing using CCG. In Proc. of the EMNLP Con-
ference, pages 111–118, Barcelona, Spain.

David A. Cohn, Zoubin Ghahramani, and Michael I.
Jordan. 1995. Active learning with statisti-
cal models. In G. Tesauro, D. Touretzky, and
T. Leen, editors, Advances in Neural Informa-
tion Processing Systems, volume 7, pages 705–
712. MIT Press.

James Curran. 2003. Blueprint for a high perfor-
mance nlp infrastructure. In Proc. of the Work-
shop on Software Engineering and Architecture
of Language Technology Systems (SEALTS), Ed-
monton, Canada.

Ido Dagan and Sean P. Engelson. 1995. Committee-
based sampling for training probabilistic classi-
fiers. In Proc. of the ICML, pages 150–157.

David Day, John Aberdeen, Lynette Hirschman,
Robyn Kozierok, Patricia Robinson, and Marc Vi-
lain. 1997. Mixed-initiative development of lan-
guage processing systems. In Proc. of the 5th con-
ference on Applied NLP, pages 348–355.

Robin Dunn. 2005. wxPython toolkit. http://
www.wxpython.org.

Daniel Gildea. 2001. Corpus variation and parser
performance. In Proceedings of the EMNLP Con-
ference, pages 167–202, Pittsburgh, PA.

Martin Gudgin, Marc Hadley, Noah Mendel-
sohn, Jean-Jacques Moreau, and Henrik Frystyk
Nielsen. 2003. SOAP version 1.2 part 1: Messag-
ing framework. http://www.w3.org/TR/2003/
REC-soap12-part1-20030624/.

Julia Hockenmaier and Mark Steedman. 2002. Ac-
quiring compact lexicalized grammars from a
cleaner treebank. In Proceedings of the 3rd LREC
Conference, pages 1974–1981, Las Palmas, Spain.

Julia Hockenmaier. 2003. Data and Models for
Statistical Parsing with Combinatory Categorial
Grammar. Ph.D. thesis, University of Edinburgh.

Baden Hughes and Steven Bird. 2003. Grid-
enabling natural language engineering by stealth.
In Proc. of the Workshop on Software Engineering
and Architecture of Language Technology Systems
(SEALTS), Edmonton, Canada.

Baden Hughes, Steven Bird, Ewan Klein, and Hae-
joong Lee. 2004a. Experiments with data inten-
sive nlp on a computational grid. In Proc. of the
2004 Hong Kong International Workshop on Lan-
guage Technology.

Baden Hughes, Srikumar Venugopal, and Rajkumar
Buyya. 2004b. Grid-based indexing of a newswire
corpus. In Proc. of the 5th IEEE Workshop on
Grid Computing.

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1994. Building a large
annotated corpus of English: the Penn Treebank.
Computational Linguistics, 19(2):313–330.

Stephan Oepen, Kristina Toutanova, Stuart Shieber,
Christopher Manning, Dan Flickinger, and
Thorsten Brants. 2002. The LinGO Redwoods
Treebank: Motivation and preliminary applica-
tions. In Proceedings of the 19th International
Conference on Computational Linguistics, pages
1253–1257, Taipei, Taiwan.

2005. ReportLab toolkit. http://www.reportlab.
org/rl_toolkit.html.

Wojciech Skut, Brigitte Krenn, Thorsten Brants,
and Hans Uszkoreit. 1997. An annotation scheme
for free word order languages. In Proceedings of
the 5th ACL Conference on Applied NLP, pages
88–95, Washington, DC.

Julian Smart, Kevin Hock, and Stefan Csomor.
2005. Cross-Platform GUI Programming with
wxWidgets. Prentice Hall.

Mark Steedman. 2000. The Syntactic Process. The
MIT Press, Cambridge, MA.

Min Tang, Xiaoqing Luo, and Salim Roukos. 2002.
Active learning for statistical natural language
parsing. In Proc. of the 40th Annual Meeting of
the ACL, pages 120–127, Philadelphia, PA USA.

214


	Identifying FrameNet Frames for Verbs from a Real-Text Corpus

