
Proceedings of the Australasian Language Technology Workshop 2005, pages 24–31,
Sydney, Australia, December 2005.

A Statistical Approach towards Unknown Word Type Prediction
for Deep Grammars

Yi Zhang and Valia Kordoni
Department of Computational Linguistics

Saarland University
Saarbrücken, Germany, D-66041

Abstract

This paper presents a statistical approach to un-
known word type prediction for a deep HPSG
grammar. Our motivation is to enhance robust-
ness in deep processing. With a predictor which
predicts lexical types for unknown words ac-
cording to the context, new lexical entries can
be generated on the fly. The predictor is a
maximum entropy based classifier trained on a
HPSG treebank. By exploring various feature
templates and the feedback from parse disam-
biguation results, the predictor achieves preci-
sion over 60%. The models are general enough
to be applied to other constraint-based gram-
mar formalisms.

1 Introduction

Deep processing delivers fine-grained syntactic
and semantic analyses which are desirable for
advanced NLP applications. However, speci-
ficity and robustness are the major difficulties
that deep processing has encountered for years.

Unlike shallow methods, which in most cases
deliver an expected number of analyses, the
number of output from deep processing is usu-
ally unpredictable, especially for open texts.
The specificity problem arises when there are
more analyses generated than expected. The
analyses might be linguistically sound, but prac-
tically uninteresting for real applications. Re-
cently, with more deep processing resources
made available (Oepen et al., 2002), the speci-
ficity problem is being alleviated with statistical
parse selection models (Toutanova et al., 2002).

As to robustness, more open questions remain
to be investigated. A deep grammar is normally
a complicated rule system. Whenever the input
varies, even slightly, beyond the grammar de-
velopers’ expectations, the output becomes un-
predictable.

Closer studies of deep grammars have shown
that lexicon coverage is one of the major barri-
ers preventing deep grammars from being used

for open text processing. Take the LinGO
English Resource Grammar (ERG) (Copestake
and Flickinger, 2000), for instance. The gram-
mar has been developed for more than 10 years,
and currently contains about 22K lexicon en-
tries. A recent test on the BNC corpus reported
that only 32% of the strings have full lexical
span, of which 57% get at least one parse (Bald-
win et al., 2004). About 40% of the parsing
failures are due to lexicon missing. Lexicalized
deep grammars rely on knowledge-rich lexicon.
However, the construction of a lexicon with de-
cent coverage requires a huge amount of human
effort and considerable linguistic proficiency.

A widely adopted approach towards robust
deep processing is to integrate shallow meth-
ods (Callmeier et al., 2004). However, most re-
cent approaches still work on various fall-back
strategies. When a deep processing component
fails to deliver output, intermediate or shallow
components are invoked to provide compatible
analyses. Practically valid, this approach does
not directly help to enhance the robustness of
deep processing itself.

Inspired by the statistical approaches in parse
selection (Toutanova et al., 2002), we pro-
pose a statistical approach for unknown word
type prediction. The experiments are carried
out on a broad-coverage linguistically-precise
HPSG grammar for English, the LinGO En-
glish Resource Grammar (ERG) (Copestake
and Flickinger, 2000). However the underlying
statistical model is general enough to apply to
other deep grammars. Also, by incorporating
the parse disambiguation result, we show that
the robustness is in nature a dual problem to
the specificity. And they can benefit from each
other’s improvements.

The remainder of the paper is structured as
follows: Section 2 gives the background about
the lexicon in HPSG; Section 3 describes our
statistical models for unknown word type pre-
diction and the various feature templates we

24

use; Section 4 shows how the parse selection
model can be incorporated to enhance the pre-
cision of prediction ; Section 5 reports on the
experiment results; Section 6 compares our ap-
proach to other related work; Section 7 con-
cludes our approach and presents some aspects
of our future work.

2 Lexicon Representation and
Definitions in HPSG

Head-driven Phrase Structure Grammar
(HPSG) (Pollard and Sag, 1994) is a widely
adopted constraint-based grammar formalism.
Based on typed feature structure (TFS) (Car-
penter, 1992), HPSG is highly lexicalized,
which means there is only a limited number of
highly generalized rules (ID Schemata & LP
rules). A knowledge-rich lexicon is organized
into a complex type hierarchy.

In HPSG, all the linguistic objects are mod-
eled by TFSs. Formally, a TFS is a directed
acyclic graph (DAG). Each node in the DAG
is labelled with a sort symbol (or type) corre-
sponding to the category of the linguistic ob-
ject. All the sort symbols are organized into an
inheritance system, namely the type hierarchy.
Two types are compatible if they share at least
one common subtype in the hierarchy.

The lexicon is also organized into the type hi-
erarchy. In principle, each lexical entry is a well-
formed TFS, which conveys a set of constraints.
The constraints include both feature-value ap-
propriateness and type compatibility. For in-
stance, Figure 1 is the TFS for the proper name
“Mary”.

word



















































phon

〈

“mary”

〉

synsem

synsem











































loc

local







































cat

cat











head

noun

[

case case

prd bool

]

val

valence

[

subj 〈〉

spr 〈〉

comps 〈〉

]











cont

nom-obj













ind 1

ref

[

per 3rd

num sg

gen fem

]

restrs

〈

naming

[

name Mary

bearer 1

]

〉













conx | bkgrd

〈

female

[

inst 1

]

〉







































nonloc nonlocal





























































































Figure 1: TFS of lexical entry for “Mary”

However in implementation, complete de-

scription is barely necessary. Most of the con-
straints will be conveyed via type inheritance.
Only entry specific information like the stem
and the semantic relation are required.

tsunami_n1 := n_intr_le &
[STEM < "tsunami" >,

SYNSEM [LKEYS.KEYREL.PRED
"_tsunami_n_rel",

PHON.ONSET con]].

admire_v1 := v_np_trans_le &

[STEM < "admire" >,
SYNSEM [LKEYS.KEYREL.PRED

"_admire_v_rel",

PHON.ONSET voc]].

Figure 2 gives part of the lexical hierarchy in
ERG under the type basic noun word. Types
with the suffix “le” are so-called leaf lexical
types and should be directly assigned to lexical
entries. These types are always mutually sep-
arated and incompatible. It is noticeable that
each lexical entry takes exactly one leaf lexical
type. When a word has more than one syntac-
tic and/or semantic behaviors, different lexical
entries will be created separately.

ERG1 defines in total 741 leaf lexical types,
of which 709 types are actually used in its lexi-
con with 12347 entries. A large number of these
lexical types are closed categories whose lexical
entries should already exist in the grammar. It
is obvious that missing lexical entries, in most
cases, should be in open categories. Verb, noun,
adjective and adverb are the major open cate-
gories. In ERG, the number of leaf lexical types
under these general categories are shown in Ta-
ble 1.

General Cat. Leaf Lex Types Num.
verb 261
noun 177

adjective 78
adverb 53

Table 1: Number of Leaf Lexical Types under
Major Open Categories in ERG

However, even for the open categories, the
distribution of existing lexical entries over dif-
ferent lexical types varies significantly. Table

1The June 2004 release of ERG was used through-
out this paper for experiments and statistics. This was
also the version used for building the latest version of
Redwood Treebank.

25

basic noun word

noun noninfl word basic n proper lexent

basic intr noun word n mass le n proper lexent

basic intr lex entry n proper le

n intr lex entry n ppof meas le

n intr le n intr nosort le

Figure 2: Part of the Lexical Hierarchy in ERG

2 lists the top 10 lexical types with maximum
number of entries in the ERG lexicon.

Leaf Lexical Type Num. of Entries
n intr le 1742

n proper le 1463
adj intrans le 1386
v np trans le 732

n ppof le 728
adv int vp le 390
v np* trans le 342

n mass count le 292
v particle np le 242

n mass le 226

Table 2: Number of Entries for Top-10 Leaf Lex-
ical Types in ERG

The top 10 verbal types count for about 75%
of the verbal entries. For nouns the figure is
about 95% and 90% for adjectives. Presumably,
the automated lexical extension for nouns will
be easier. This is plausible because verbal lexi-
cal entries normally require more detailed sub-
categorization information.

3 Statistical Unknown Word Type
Prediction Models

For open text processing, a static lexicon in-
evitably becomes insufficient. A better strat-
egy is to build an unknown word type predic-
tor which can “guess” the lexical type from the
available context, and generate lexical entries
on the fly.

As mentioned in Section 2, the lexicon of an
HPSG grammar is organized into a type hier-
archy. Each entry bears exactly one leaf lexical
type. So the predictor is actually a classifier,
which takes various context and morphological
forms of the unknown word into consideration,

and picks out the most suitable leaf lexical type
as output.

Such an unknown word type predictor is es-
sentially very similar to a part-of-speech (POS)
tagger. A typical POS tagger assigns a (unique
or ambiguous) part-of-speech tag to each token
in the input. A large number of current lan-
guage processing systems use a POS tagger for
pre-processing. The difference is that our un-
known word type predictor has a very larger
tagset. The tagset of a typical POS tagger usu-
ally contains tens of different tags. But our
predictor needs to handle hundreds of possible
types. In addition, an unknown word type pre-
dictor only predicts unknown words while a typ-
ical POS tagger generates tags for each token
on the input sequence. Another point is that
our unknown word type predictor can use any
context information available at the processing
stage. But normally a POS tagger only uses sur-
face context features because these are usually
used during pre-processing.

3.1 Maximum Entropy Classifier Based

Predition Model

Considering these difference, we have con-
structed our predictor based on a maximum en-
tropy classifier. The advantages of a Maximum
entropy model lie in the general feature repre-
sentation and in no independence assumptions
between features. A maximum entropy model
can also easily handle thousands of features and
large numbers of possible outputs.

For our prediction model, the probability of
a lexical type t given an unknown word and its
context c is:

p(t, c) =
exp(

∑

i θifi(t, c))
∑

t′∈T exp(
∑

i θifi(t′, c))
(1)

where feature fi(t, c) may encode arbitrary

26

characteristics of the context. The parameters
< θ1, θ2, . . . > can be evaluated by maximizing
the pseudo-likelihood on a training corpus (see
(Malouf, 2002)).

The basic feature templates used in our ME-
based model include the prefix and suffix of the
unknown word, the context words within a win-
dow size of 5, and their corresponding lexical
types.

3.2 Using Partial Parsing Results as

Features

Each lexical type is essentially a set of con-
straints on linguistic objects. If a word has a
specific lexical type, it must conform to all the
constraints demanded by the type, and hence it
can only appear in some specific linguistic con-
text. The constraints concern various linguistic
aspects, among which syntactic constraints are
predominant.

One advantage of using a maximum entropy
based model is that ME allows the combina-
tion of diverse forms of contextual information
in a principled manner, and it does not impose
any distributional assumptions on the training
data. So far, only the surface context features
(words and their lexical types) are used. It can
be presumed that the precision can be enhanced
by adding syntactic context as features into the
prediction model.

However, syntactic information is not avail-
able in a traditional pipeline processing model,
where the syntactic analysis will be the post-
processing module to the predictor. Also, when
there are unknown words in the input, a full
analysis of the sentence is not possible.

So we have modified our strategy by inserting
a partial parsing stage before the lexical type
predictor if there are unknown words on the in-
put sequence.

The partial parse needs some clarification. A
full parse can be represented by a set of edges
as shown in Figure 3(a). Each edge is derived
from a rule application. There is no more than
one edge between each pair of positions. And
there is always exactly one full span edge in a
full parse.

A partial parse of an input sequence is a set of
edges which composes a shortest path from the
beginning to the end of the sequence2. There

2Note that the edges on the full parse of the sentence
are not necessary in the corresponding partial parses if a
word is assumed to be unknown. However, partial parses
do reduce the number of candidate edges for considera-
tion.

might be more than one partial parse for a given
input sequence. As shown in Figure 3(b), when
the word between position 2 and 3 is unknown, a
dummy edge c is created. This dummy edge will
prevent further rule application. Both a− c− d
and b− c− d are partial parses.

0 1 2 3 4

(a)

0 1 2 3 4

a b

c

d

(b)

Figure 3: Parsing edges: (a) edges in a full
parse; (b) edges in partial parses.

From the partial parses, we collect all edges
that are adjacent to the left/right of the un-
known word, respectively. Then the rules that
generate these edges are counted according to
their application (once per edge). The most fre-
quently used rules to create left/right adjacent
edges are added as two features conveying syn-
tactic information into the ME-based model. A
complete list of all features templates used in
our predictor are listed in Table 3.

4 Incorporating Parse
Disambiguation Results

As mentioned before, deep lexical types nor-
mally encode complicated constraints that only
make sense when they work together with the
grammar rules. And some subtle differences be-
tween lexical types do not show statistical sig-
nificance in a corpus with limited size. So the
feedback from later stages of deep processing is
very important for predicting the lexical types
for the unknown words.

The partial parsing results break the pipeline
model. However, they might help only when the
unknown is not the head of the phrase. Other-
wise, the full parse crushes into small fragments,
and the partial parsing results normally make
no sense. An alternative way of breaking the
pipeline model is to help the parser to generate
full parses in the first place, and let the parsing
result tell which lexical entry is good.

27

Features
X is prefix of wi, |X| ≤ 4
X is suffix of wi, |X| ≤ 4

ti−1 = X, ti−2ti−1 = XY , ti+1 = X, ti+1ti+2 = XY
wi−2 = X, wi−1 = X, wi+1 = X, wi+2 = X

LP is the left adjacent most frequent edge of wi

RP is the right adjacent most frequent edge of wi

Table 3: Feature templates used in ME-based prediction model for word wi (tj is the lexical type
of wj)

In order to help the parser to generate a full
parse of the sentence, we feed the newly gen-
erated lexical entries directly into the parser.
Instead of generating only one entry for each
occurrence of unknown, we pass on top n most
likely lexical entries. With these new entries,
the sentence will receive one or more parses (as-
suming the sentence is grammatical and covered
by the grammar). From the parsing results, a
best parse is selected with the disambiguation
model, and the corresponding lexical entry is
taken as the final result of lexical extension.

Within this processing model, the incorrect
types will be ruled out if they are not compatible
with the syntactic context. Also the infrequent
readings of the unknown will be dispreferred by
the disambiguation model.

5 Experiments

Missing lexical entries can be discovered by lex-
icon checking. Precision is the only measure-
ment for the lexical type predictor. In this
section we will evaluate our models by exper-
iments.

5.1 Resources

Redwoods (Oepen et al., 2002) is a HPSG tree-
bank that records full analyses of sentences with
ERG. The genre of texts includes email corre-
spondence, travel planning dialogs, etc. The 5th
growth of Redwoods contains about 16.5K sen-
tences and 122K tokens3.

In all our experiments, we have done a 10-
fold cross validation on the Redwoods treebank.
For each fold, words that do not occur in the
training partition are assumed to be unknown.

A modified version of the efficient HPSG
parser PET (Callmeier, 2000; Callmeier, 2001)
has been used to generate the derivation tree
fragments of the partial parses.

3Sentences without a full analysis are neither counted
here nor used in experiments.

We have also modified LexDB (Copestake et
al., 2004) in order to be able to add temporal
lexical entries that are only active for specific
sentence.

The parse disambiguation model we have
used is a maximum entropy based model that
uses non-lexicalized features with 2 levels of
grandparnets (see (Toutanova et al., 2002) for
detailed discussion about parse disambiguation
models for HPSG grammars).

For maximum entropy parameter estimation,
we have used (Malouf, 2002)’s MaxEnt package.

5.2 Results

For comparison, we have built a baseline sys-
tem that always assigns a majority type to each
unknown according to the POS tag. More speci-
ficically, we tag the input sentence with a small
Penn Treebank-like POS tagset. Then POS tag
is mapped to a most popular lexical type for
that POS.4 Table 4 lists part of the mappings.

POS Majority Lexical Type
noun n intr le
verb v np trans le
adj. adj intrans le
adv. adv int vp le

Table 4: Part of the POS tags to lexical types
mapping

Again for comparison, we have built another
two simple prediction models with two popular
general-purpose POS taggers, TnT and MX-
POST. TnT is a HMM-based trigram tagger
while MXPOST is maximum entropy based.
We have trained the tagging models by using all
the leaf lexical types as the tagset. The taggers
tag the whole sentence. But only the output
tags for the unknowns are taken to generate the
lexical entries.

4This is similar to the built-in unknown word han-
dling mechanism of the PET system.

28

The maximum entropy based model is tested
both with and without using partial parsing re-
sults as features. To incorporate disambigua-
tion results, our predictor generates 3 entries
for each unknown and store them as temporary
entries into the LexDB.

Precisions of the different prediction models
are shown in Table 5.

Model Precision
Baseline 30.7%
TnT 40.4%
MXPOST 40.2%
ME(-pp) 50.0%
ME(+pp) 50.5%
ME(-pp)+ disambi. result 61.3%

Table 5: Precision of Unknown Word Type Pre-
dictors (+/-pp means w or w/o partial parsing
result features)

The baseline model achieves precision around
30%. This means that the task of unknown
word type prediction for deep grammars is non-
trivial. The general-purpose POS taggers based
models perform quite well, outperforming the
baseline by 10%. As a confirmation to (El-
worthy, 1995)’s claim, a huge tagset does not
imply that tagging will be very difficult. Our
ME-based model significantly outperforms the
taggers-based models by another 10%. This is
a strong indication of our model’s advantages.

By incorporating simple syntactic informa-
tion into the ME-based model, we get extra pre-
cision gain of less than 1%. It is worth notic-
ing that the syntactic features we used are still
naive. Better syntactic features remain to be ex-
plored in future work. Also, by applying partial
parsing, the computation complexity increases
significantly in comparison to our basic ME-
based model.

By incorporating the disambiguation results,
the precision of the model boosts up for another
10%. The computational overhead is propor-
tional to the number of candidate entries added
for each unknown word. However, in most cases,
introducing lexical entries with incorrect types
will end up to parsing failure and can be ef-
ficiently detected by quick checking. In such
cases the slowdown is acceptable.

In general, we have achieved up to 60% pre-
cision of unknown word type prediction for the
ERG in these experiments. Given the complex-
ity of the grammar and the huge number of pos-

sible lexical types, these results are satisfying.
Also, in real case of grammar adaptation for
new domains, a large portion of unknowns are
proper names. This means that the precision
might get even higher in real applications. A
test with some small text collection with real
unknown words 5 shows that the precision can
easily go above 80% with the basic ME model
without partial parsing features.

It should also be mentioned that some of
these experiments are also carried out for Dutch
Alpino Grammar (Bouma et al., 2001), and sim-
ilar results are obtained. This shows that our
method may be grammar and platform indepen-
dent.

6 Comparison with Related Work

This work is in essence very similar to the work
of deep lexical acquisition (DLA) in (Baldwin,
2005). A minor difference is that our model al-
ways generates (at least) one lexical entry for
the unknown, so that the deep processing does
not halt at the very beginning. A more impor-
tant difference is that, while (Baldwin, 2005)
focuses on generalizing the method of deriving
DLA models on various secondary language re-
sources, our work focuses more on how to utilize
the deep grammar itself as a source for enhanc-
ing robustness. The Redwoods Treebank is by
nature the output of the deep grammar. And
the parsing, as well as the disambiguation mod-
els are also part of the grammar that has even-
tually contributed to the unknown word type
prediction.

(Erbach, 1990; Barg and Walther, 1998; Fou-
vry, 2003) followed a different approach to-
wards unknown words processing for unification
based grammars. The basic idea was to use
the underspecified lexical entries, namely TFSs
with fewer constraints, in order to generate full
parses for the sentences, and then extract the
sub-TFS from the parses as a new lexical en-
try. However, lexical entries generated in this
way might be both too general and too specific.
And underspecified lexical entries with fewer
constraints allow more grammar rules to be ap-
plied while parsing. It gets even worse when

5We used a text set named rondane for training and
hike for testing. rondane contains 1424 sentences in
formal written English about tourism in the norwegian
mountain area, with an average sentence length of 16
words; hike contains 320 sentences about outdoor hik-
ing in Norway with an average sentence length of 14.3
words. Both contain a lot of unknowns like location
names, transliterations, etc.

29

two unknown words occur next to each other,
which might allow almost any constituent to be
constructed. Also, the underspecified lexical en-
try significantly increases computational com-
plexity. (van Schagen and Knott, 2004) took a
similar approach of interactive unknown word
acquisition in a dialogue context.

(Thede and Harper, 1997) reported an em-
pirical approach towards unknown lexical anal-
ysis using morphological and syntactic infor-
mation. The approach is similar to ours in
spirit. However, the experiments were done for
a shallow parser with a very limited number of
word classes. The applicability to lexicalist deep
grammars with lots of lexical types is unknown.

In (Malouf and van Noord, 2004), the max-
imum entropy models were used for wide cov-
erage parsing with the Alpino Dutch grammar
(Bouma et al., 2001). But the focus was on
parse selection, not unknown words processing.

Another related work is supertagging (Ban-
galore and Joshi, 1999). In supertagging, the
lexical items are assigned with rich descriptions
(supertags) that impose complex constraints in
a local context. Some statistical techniques
of assigning supertags to unknown words have
been reported. For example, (Bangalore and
Joshi, 1999) used a simple method of combin-
ing a probability estimate for unknown words
P (UKN |Ti) with a probability estimate based
on word features (capitalization, hyphenation,
ending of words) by:

P (Wi|Ti) = P (UNK|Ti) ∗ P (w feat(Wi)|Ti)
(2)

where UNK is a token associated with each su-
pertag and its count NUNK is estimated by:

P (UNK|Tj) =
N1(Tj)

N(Tj) + η
(3)

Nunk(Tj) =
P (UNK|Tj) ∗N(Tj)

1− P (UNK|Tj)
(4)

N1(Tj) is the number of words that are as-
sociated with the supertag Tj that appear in
the corpus once. From some aspect, this ap-
proach is similar to our work. But our ME-
based model allows more general feature repre-
sentation. Also the lexical types we used are
more general in the sense that both local and
non-local constraints are encoded.

7 Conclusion and Future Work

Several statistical unknown word type predic-
tion models are implemented and evaluated for

deep HPSG grammars. The general-purpose
POS taggers based approach delivers satisfying
precision. The maximum entropy based predic-
tor allows for more general feature representa-
tion. By incorporating parse disambiguation re-
sults, the unknown word type predictor achieves
precision over 60%.

Although the experiments are carried out
with the ERG, the underlying model is general
enough to be easily applied on other constraint-
based lexicalist grammars, provided the lexical
categories can be abstracted by a set of atomic
types.

Several aspects of this work need further ex-
ploration. More sophisticated syntactic features
should be investigated. Besides, the deep gram-
mar also provides semantic analyses which are
not available in shallow processing. The gen-
eral feature representation in our model allows
the incorporation of this orthogonal dimension
of information to enhance the precision of pre-
diction. Also, larger corpora in more variety
of genres are certain to generate better mod-
els. The application of the method to more deep
grammars is anticipated.

References

Timothy Baldwin, Emily M. Bender, Dan
Flickinger, Ara Kim, and Stephan Oepen.
2004. Road-testing the English Resource
Grammar over the British National Corpus.
In Proceedings of the Fourth International
Conference on Language Resources and Eval-
uation (LREC 2004), Lisbon, Portugal.

Timothy Baldwin. 2005. Bootstrapping deep
lexical resources: Resources for courses. In
Proceedings of the ACL-SIGLEX Workshop
on Deep Lexical Acquisition, pages 67–76,
Ann Arbor, Michigan, June. Association for
Computational Linguistics.

Srinivas Bangalore and Aravind K. Joshi. 1999.
Supertagging: an approach to almost parsing.
Computational Linguistics, 25(2):237–265.

Petra Barg and Markus Walther. 1998. Pro-
cessing unkonwn words in HPSG. In Pro-
ceedings of the 36th Conference of the ACL
and the 17th International Conference on
Computational Linguistics, Montreal, Que-
bec, Canada.

Gosse Bouma, Gertjan van Noord, and Robert
Malouf. 2001. Alpino: Wide-coverage com-
putational analysis of dutch. In Computa-
tional Linguistics in The Netherlands 2000.

Ulrich Callmeier, Andreas Eisele, Ulrich

30

Schäfer, and Melanie Siegel. 2004. The
deepthought core architecture framework. In
Proceedings of LREC 04, Lisbon, Portugal.

Ulrich Callmeier. 2000. PET – a platform for
experimentation with efficient HPSG process-
ing techniques. Journal of Natural Language
Engineering, 6(1):99–108.

Ulrich Callmeier. 2001. Efficient parsing
with large-scale unification grammars. Mas-
ter’s thesis, Universität des Saarlandes,
Saarbrücken, Germany.

Bob Carpenter. 1992. The Logic of Typed Fea-
ture Structures. Cambridge University Press,
Cambridge, England.

Ann Copestake and Dan Flickinger. 2000. An
open-source grammar development environ-
ment and broad-coverage english grammar
using hpsg. In Proceedings of the Second con-
ference on Language Resources and Evalua-
tion (LREC-2000), Athens, Greece.

Ann Copestake, Fabre Lambeau, Benjamin
Waldron, Francis Bond, Dan Flickinger, and
Stephan Oepen. 2004. A lexicon module
for a grammar development environment. In
Proceedings of the 4th International Confer-
ence on Language Resources and Evaluation
(LREC-2004), Lisbon, Portugal.

David Elworthy. 1995. Tagset design and in-
flected languages. In EACL SIGDAT work-
shop “From Texts to Tags: Issues in Multilin-
gual Language Analysis”, pages 1–10, Dublin,
Ireland, April.

Gregor Erbach. 1990. Syntactic processing of
unknown words. IWBS Report 131, IBM,
Stuttgart.

Frederik Fouvry. 2003. Lexicon acquisition
with a large-coverage unification-based gram-
mar. In Companion to the 10th of EACL,
pages 87–90, ACL, Budapest, Hungary.

Robert Malouf and Gertjan van Noord. 2004.
Wide coverage parsing with stochastic at-
tribute value grammars. In IJCNLP-04
Workshop: Beyond shallow analyses - For-
malisms and statistical modeling for deep
analyses.

Robert Malouf. 2002. A comparison of al-
gorithms for maximum entropy parameter
estimation. In Proceedings of the Sixth
Conferencde on Natural Language Learning
(CoNLL-2002), pages 49–55.

Stephan Oepen, Kristina Toutanova, Stu-
art Shieber, Christopher Manning, Dan
Flickinger, and Thorsten Brants. 2002.
The LinGO Redwoods treebank: Motiva-

tion and preliminary applications. In Pro-
ceedings of COLING 2002: The 17th Inter-
national Conference on Computational Lin-
guistics: Project Notes, Taipei.

Carl J. Pollard and Ivan A. Sag. 1994. Head-
Driven Phrase Structure Grammar. Univer-
sity of Chicago Press, Chicago, Illinois.

Scott M. Thede and Mary Harper. 1997. Analy-
sis of unknown lexical items using morpholog-
ical and syntactic information with the timit
corpus. In Proceedings of the Fifth Workshop
on Very Large Corpora, pages 261–272.

Kristina Toutanova, Christoper D. Manning,
Stuart M. Shieber, Dan Flickinger, and
Stephan Oepen. 2002. Parse ranking for a
rich HPSG grammar. In Proceedings of the
First Workshop on Treebanks and Linguis-
tic Theories (TLT2002), pages 253–263, So-
zopol, Bulgaria.

Maarten van Schagen and Alistair Knott. 2004.
Tauira: A tool for acquiring unknown words
in a dialogue context. In Proceedings of
the 2004 Australasian Language Technology
Workshop (ALTW2004), Macquarie Univer-
sity, Australia.

31

	Learning of Graph Rules for Question Answering

