Referring Expression Generation as a Search Problem

Bernd Bohnet
Bohnet@iis.uni-stuttgart.de
Institute for Intelligent Systems

University of Stuttgart

70569 Stuttgart

Germany

Abstract

One of the most widely explored issues in natu-
ral language generation is the generation of re-
ferring expressions (GRE): given an entity we
want to refer to, how do we work out the content
of a referring expression that uniquely identifies
the intended referent? Over the last 15 years, a
number of authors have proposed a wide range
of algorithms for addressing different aspects of
this problem, but the different approaches taken
have made it very difficult to compare and con-
trast the algorithms provided in any meaningful
way. In this paper, we propose a characterisa-
tion of the problem of referring expression gen-
eration as a search problem; this allows us to
recast existing algorithms in a way that makes
their similarities and differences clear.

1 Introduction

A major component task in natural language
generation (NLG) is the generation of referring
expressions: given an entity that we want to
refer to, how do we determine the content of a
referring expression that uniquely identifies that
intended referent? Since at least (Dale, 1989),
the standard conception of this task in the lit-
erature has been as follows:

1. We assume we have a knowledge base that
characterises the entities in the domain in
terms of a set of attributes and the values
that the entities have for these attributes;
so, for example, our knowledge base might
represent the fact that entity e; has the
value cup for the attribute type, and the
value red for the attribute colour.

2. In a typical context where we want to re-
fer to some e;, which we call the intended
referent, there will be other entities from
which the intended referent must be distin-
guished; these are generally referred to as
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distractors. So, for example, we may want
to distinguish a particular cup from all the
other items present in the context of a din-
ing table.

3. The goal of referring expression generation
is therefore to find some collection of at-
tributes and their values which distinguish
the intended referent from all the potential
distractors in the context.

Over the last 15 years, a wide variety of algo-
rithms have been proposed to deal with specific
aspects of this problem. For example, while ear-
lier algorithms focussed on the use of attributes
that correspond to simple one-place predicates,
later work attempts to address the use of rela-
tional predicates, and other work looks at the
incorporation of boolean operators such as not
and and. The consequence is that we now have
a considerable body of research in this area, but
it is difficult to establish just how these different
algorithms relate to each other.

This paper represents a first step to-
wards consolidating the results in this area, with
the aim of developing a framework within which
different algorithms can be compared and as-
sessed. The structure of the paper is as fol-
lows. In Section 2, we provide a brief overview
of work on the generation of referring expres-
sions to date. In Section 3, we borrow a stan-
dard approach used in Artificial Intelligence (AI)
to represent problems in an elegant and uni-
form way (see, for example, (Simon and Newell,
1963); (Russell and Norvig, 2003)), sketching
how GRE algorithms can be expressed in terms
of problem-solving by search. In Section 4, we
explore how the most well-known algorithms
can be expressed in this framework. In Sec-
tion 5, we discuss how this approach enables a
more fruitful comparison of existing algorithms,
and we point to ways of taking this work fur-
ther.



2 A Brief Review of Work To Date

Although the task of referring expression gen-
eration is discussed informally in earlier work
on NLG (in particular, see (Winograd, 1972;
McDonald, 1980; Appelt, 1981), the first for-
mally explicit algorithm was introduced in Dale
(1989). This algorithm, which we will refer
to as the Full Brevity (FB) algorithm, is still
frequently used as a basis for other GRE al-
gorithms. The FB algorithm searches for the
best solution amongst all possible referring ex-
pressions for an entity; the algorithm derives
the smallest set of attributes for the referent in
question, producing a referring expression that
is both adequate and efficient.

This initial algorithm limited its ap-
plication to one-place predicates. Dale and
Haddock (1991) introduced a constraint-based
procedure that could generate referring expres-
sions involving relations (henceforth IR), using
a greedy heuristic to guide the search.

As a response to the computational
complexity of greedy algorithms, (Reiter and
Dale, 1992; Dale and Reiter, 1995) introduced
the psycholinguistically motivated Incremental
Algorithm (1a). The most used and adapted
algorithm, this is based on the observation
that people often produce referring expressions
which are informationally redundant; the algo-
rithm uses a preference ordering over the at-
tributes to be used in a referring expression, ac-
cumulating those attributes which rule out at
least one potential distractor.

In recent years there have been a num-
ber of important extensions to the 1A. The
Context-Sensitive extension (¢s; (Krahmer and
Theune, 2002)) is able to generate referring ex-
pressions for the most salient entity in a con-
text; the Boolean Expressions algorithm (BE;
(van Deemter, 2002)) is able to derive expres-
sions containing boolean operators, as in the cup
that does not have a handle; and the Sets algo-
rithm (SET; (van Deemter, 2002)) extends the
basic approach to references to sets, as in the
red cups.

Some approaches combine algorithms
which reuse only parts of other algorithms:
the Branch and Bound (BaB; (Krahmer et al.,
2003)) algorithm uses the Full Brevity algo-
rithm, but is able to generate referring expres-
sions with both attributes and relational de-
scriptions using a graph-based technique.

We have identified here what we be-
lieve to be the most cited strands of research in
this area, but of course there are many other al-
gorithms described in the literature: see, for ex-
ample, (Horacek, 1997; Bateman, 1999; Stone,
2000). Space limitations prevent a complete
summary of this other work here, but our in-
tention is to extend the analysis presented in
this paper to as many of these other algorithms
as possible.

All these algorithms focus on the gen-
eration of definite references; they are typically
embedded in a higher-level algorithm that in-
cludes cases for when the entity has not been
previously mentioned (thus leading to an ini-
tial indefinite reference) or when the referent
is in focus (thus leading to a pronominal refer-
ence); see, for example, (Dale, 1989; Krahmer
and Theune, 2002; Dale, 2003).

3 GRE from the Perspective of
Problem Solving

With so many algorithms to choose from, it
would be useful to have a uniform framework in
which to discuss and compare algorithms; unfor-
tunately, this is rather difficult given the variety
of different approaches that have been taken to
the problem.

Within the wider context of Al, Russell
and Norvig (2003) present an elegant definition
of a general algorithm for problem solving by
search. The search graph consists of nodes with
the components state and path-cost; the prob-
lem is represented by an initial-state, an expand-
method which identifies new states in the search
space, a queuing-method which determines the
order in which the states should be considered,
and a path-cost-function which determines the
cost of reaching a given state. In this frame-
work, the search strategy is determined by the
combination of queuing-method and path-cost-
function used.

In the following, we use this framework
to provide a characterisation of existing GRE al-
gorithms in terms of problem solving by search.
We conceptualise the search space as consist-
ing of states that have three components: a de-
scription that is true of the intended referent,
the set of distractor entities that the descrip-
tion also applies to besides the intended refer-
ent, and the set of properties of the intended
referent that have not yet been considered to
describe the referent.



1. The initial-state is of the form ({},C,P),
where C' is the set of distractors in the ini-
tial context, and P is the set of all proper-
ties true of the intended referent.

2. The goal state is of the form
({A\ePy, \xPy, ...}, {},P'), where the
first term contains a set of properties of
the intended referent that, by virtue of the
second term (the set of distractors) being
an empty set, distinguish the intended
referent; P’ contains any properties of
the intended referent not yet used in the
description.

3. All other states in the search space are then
intermediate states through which an algo-
rithm will move as it adds new properties
to the description.

4. The search strategy is carried out by the
expand-method and the queuing-method,
which together characterise the specific
GRE algorithm (for example, FB, GH or 1A)
that is used.

5. The path-cost-function allows us to route
the search as required; this can be used to
take account of salience weights, or to em-
body some kind of heuristic search.

For any given algorithm, not all of the methods
and functions need to be implemented; in par-
ticular, some algorithms do not require a path-
cost-function.

4 GRE Algorithms in Terms of
Problem Solving

We adopt here an object oriented formalism,’
since this allows the representation of depen-
dencies between the algorithms by means of in-
heritance and overwriting.

To enable more fruitful comparison of
the different GRE algorithms, we want to dis-
tinguish those aspects of the algorithms which
are true of all algorithms, and those which are
unique to each particular algorithm. In Sec-
tion 4.1, we first describe the elements that are
shared by all the algorithms; we then go on to
describe the distinct aspects of each algorithm
in turn.

"We follow the code conventions as used in OQO-
languages, where the names of classes start with upper
case characters, and the names of methods and variables
start with lower case characters.

4.1 Common Elements

This approach allows us to separate out those
aspects of the various algorithms which remain
constant.

Following from the previous section,
the definitions of the node and state classes are
as shown in Definition 1. This figure also shows
the definitions for initial-state and goal, which
remain constant across the algorithms.

Definition 1: The Node and State Classes
class Node {
s // State
path-cost |/ Cost of the path
getState()
{return s} // returns the state of the node

class State {
L // Set of chosen properties and/or relations
C' // Set of distractors
P // Set of available properties and/or relations

initialState() {return new State(),C,P)}
// the goal is the empty set of distractors
goal(s) {

if s.C = () then return true

else return false

}

Given these components, the main
method makeRefExp is then as represented in
Definition 2. This takes two arguments, which
serve as the parameters that distinguish one
algorithm from another: an expand method
to create the successors of a given state, and
a queue method, which defines how to insert
nodes into the node queue. Depending on the
order in which the nodes are inserted, differ-
ent search strategies can be realized: for exam-
ple, when the nodes are inserted at the front
of the queue, the search strategy is depth-first;
when the nodes are inserted at the end of the
queue, the search strategy is breadth-first; when
the nodes of the queue are sorted by the esti-
mated distance to the goal, then the search type
is best-first; and so on.

In addition, we may require a number
of general-purpose methods which can be used
by a number of different algorithms. One such
method is the method rulesOut, which takes
a property or relations p and a set of distrac-
tors, and returns the set of distractors which
are ruled out by p.



Definition 2: The Basic Algorithm Struc-
ture
makeRefExp() {
// create a initial queue with a single node
nodeQueue «— [new Node(initialState())]
while nodeQueue # () do
node «— removeFront(nodeQueue)
if goal(node.getState()) then
return node // success
end

nodeQueue — queue(nodeQueue,expand(node))

end
return nil // failure

With this machinery in place, we can
now redefine the existing algorithms in terms of
their core differences, which correspond essen-
tially to different ways of expanding the search
space.

4.2 The Full Brevity Algorithm

The distinctive property of the Full Brevity (FB)
algorithm is that it computes all combinations
of the available properties P with increasing
length, so that it may find the shortest combi-
nation that succeeds in identifying the intended
referent.

This behaviour is captured by the ez-
pand method shown in Definition 3.  The
method creates a set of successors by creating a
node for each property p; which has not so far
been checked, provided that p; rules out at least
one distractor.

The FB algorithm uses a breadth-first
search implementation of the queue, as shown
in Definition 4. Consequently, any solution for
which goal returns true will have a minimal
number of properties, since the breadth-first
search considers smaller combinations of prop-
erties first.

The FB algorithm uses the expand
method, and createNode method which are
shown in Definition 3 and it is invoked by a
call of makeRefFExp method which is shown in
Definition 2.

4.3 The Incremental Algorithm

The distinctive property of the Incremental Al-
gorithm is that it reduces the computational
complexity of constructing a referring expres-
sion by considering properties to use in se-

Definition 3: The Full Brevity Algorithm

expand(node) {
N «—
s « node.getState()
foreach p € s.P do
N — N U/{ createNode (node,p)}
end
return N

createNode(node, p) {
s « node.getState()
out «— rulesOut(p, s.C)
if out # () then
return new Node(s.C — out, s.L U {p},
s.P —{p})
else return new Node(s.C, s.L, s.P — {p})

}

Definition 4: Breadth-first Queueing

queve(actNodes, newNodes) {
// append the nodes at the end
return actNodes U newNodes

}

quence from a predefined ordering of the avail-
able properties. The implementation of the ex-
pand method shown in Definition 5 provides this
behaviour.

If the set of properties of the current
state s.P is not empty, then the first property
p according to the given order O is chosen from
the set of properties of the current state s.P,
and a node is created with a new state by the
method createNode. Note that the createNode
method is the same as that used in the FB algo-
rithm and shown in Definition 3.

Unlike the expand method used in the
FB algorithm, however, the set of nodes re-
turned here contains only one node. The main
method applies the goal predicate to this node;
if this returns true, then the node containing the
state with the list of properties for the referring
expression is returned.

4.4 Extension of the IA to Sets

All the algorithms considered so far have been
concerned with constructing descriptions for in-
dividual referents; van Deemter (2002) intro-
duced an algorithm which extends the 1A to sets.
The extension is shown in terms of our frame-
work in Definition 6.



Definition 5: The Incremental Algorithm

O // Predefined constant order of properties
expand(node) {
N « 0
s «— node.getState()
if s.P # () then
p <« choose the first p in O, where p € s.P
N «— NU { createNode(node,p) }
end
return N

Definition 6: The Set Algorithm

R // Set of referents
createNode(node, p) {
out — rulesOut(p, s.C')

if (-3z € R&x € out)&(Jx € C&x € out) then

the largest number of distractors; in the sec-
ond stage, each entity which is referenced by
the chosen relation has to be described by re-
peating the process recursively. This is done in
a depth-first manner, but if the related entity
is not uniquely distinguished then the next p;
that the intended referent participates in is cho-
sen, and so on. This process continues until all
entities are uniquely described (success) or no
further relations can be chosen (failure).

N=(L={Aa bowl(a)},C={b1,b3},P={on(x.y)...)

choose relation

between(x,w,v)

describe entity

return new Node(s.C' — out, s.LU{p},s.P — {p}) Ri R2

else return new Node(s.C, s.L, s.P — {p})

}

Note that, precisely because this algo-
rithm is an extension of the 1A algorithm, we
reuse the expand method from that algorithm.
Consequently, the extension requires only the
rewriting of the createNode method, whereby an
attribute p; is only chosen when it does not rule
out entities from the set of referents R and when
it rules out at least one entity from the set of
distractors C'. If a property does not fulfil that
condition, then a node with the current state is
returned and the process is continued, as in the
IA, with the next property.

4.5 GRE Involving Relations

The algorithm for GRE Involving Relations (IR)
introduced by Dale and Haddock (1991) is
constraint-based. The search strategy used to
fulfil the constraints is a combination of a greedy
search, which chooses the relation that leads to
the smallest set of distractors, and depth-first
search to describe the entities, that is, the in-
tended referent as well as entities which are ref-
erenced in the relations.

The strategy can be explained best by
means of an AND/OR-tree, as shown in Figure 1.
Here, the top node represents a state in which
relational properties are to be considered as ad-
ditions to the set of chosen properties. Each
search step consists of two stages: in the first
stage, we choose the relation p; which rules out

Figure 1: Expansion tree for the IR algorithm

The algorithm is represented in the
problem solving paradigm as in Definition 7.
Here, the expand method chooses a relation
which rules out the largest number of distrac-
tors; it then calls the method createNode, which
recursively calls makeRefFxp for each new ref-
erent contained in the relation.

4.6 Context-Sensitive GRE

Krahmer and Theune (2002) also introduced
a number of extensions to the IA: the use of
salience weights in order to add a definite arti-
cle to the description for the most salient entity;
contrastive properties in order to add properties
which impose a contrast between two entities;
and a relational extension, similar in spirit but
not in form to that in the IR algorithm described
above.

Again, as for the sets algorithm, the
commonality with the 1A algorithm surfaces
as the reuse of the latter algorithm’s expand
method; only the createNode method needs to
be rewritten, as in Definition 8. To model this
variant in our framework, we introduce the fol-
lowing additional methods (cf. (Krahmer and
Theune, 2002)):

e contrastive takes a referent r and a prop-
erty p;; it checks whether the property un-
der consideration is contrastive.

e mostSalient takes a referent r, a set of prop-



Definition 7: Involving Relations

Definition 8: Context-Sensitive Algorithm

r // Referent
expand(node) {
s «— node.getState()
Pe — nil
// Chosen relation is p., where p rules out
// the largest number of distractors
foreach p € s.P do
if p. = nil or
|rulesOut(p, s.C)| > |rulesOut(pe, s.C)|
then p. «— p
end
end
node. < createNode(node, p.)
if (node. = nil) then return ()
else return {node.}

createNode(node, p) {
s « node.getState()
C — rulesOut(p,s.C)
L~ s.LU{p}
// Extend Description

foreach ' € {rp|r, € referents(p) & r, # r} do

node, — makeRefExp(r’)
if node,» = nil then return nil // failure
L — L Unode.getState().L

end

return new Node(C, L, s.P — {p})

erties, and a set of distractors; it checks
whether every entity in the set of distrac-
tors has a lower salience weight than .

5 Conclusions and Future Work

In the foregoing, we have shown how a num-
ber of the most frequently discussed algorithms
for the generation of referring expressions can
be represented within a common framework.
There are three significant advantages to this
approach.

First, it allows us to determine what
the algorithms have in common. This is partic-
ularly interesting in that it allows us to begin to
assemble a collection of core functionalities that
are usable in a variety of different approaches to
GRE. This is apparent not only in terms of the
general framework (where, for example, the no-
tions of states and their initialisation, and def-
inition of what it is to be a goal state, and the
overall algorithmic pattern) are shared, but in
terms of ‘helper’ routines (such as rulesOut and
mostSalient) which can be modularised out of
the essence of different algorithms.

r // Referent
createNode(node, p) {
s « node.getState()
out — rulesOut(p, s.C)
C — s.C —out

L~ s.L
if (out # 0 or contrastive(r,p)) then
L—LU{p}

if v expresses a relation between r and 7’ then

node,r «— makeRefExp(r’)
L — L U node, .getState().L
end
end
if mostSalient(r, L,C") then
L— LU {defArt}
// The most salient rules out all distractors:
C— 0
end
return new Node(C, L, s.P — {p})

Second, it makes it possible to see
what the differences between the algorithms re-
ally consist in. In their original forms, these
differences are obscured, due to the absence of
a common vocabulary for expressing the algo-
rithms; by representing the algorithms within
a common framework, it becomes easier to see
where the algorithms differ, and where the dif-
ferences are simply due to differences in nota-
tion or presentation. By using the framework
of problem solving as search, we have effectively
decomposed the algorithms into a number of key
elements: a search srategy, represented by the
queuing-method, and an expand-method, which
encompasses two aspects of each algorithm: the
basic strategy adopted and the particular kinds
of referring expressions covered. Furthermore,
the expand-method decomposes into a general
strategy for expansion (as found in, for exam-
ple, the Full Brevity algorithm and the Incre-
mental Algorithm), and a createNode method,
which varies depending upon the kind of refer-
ring expression targetted.

Third, it allows us to see more clearly
the logical space within which the algorithms
reside, and to see ways of combining aspects
of different algorithms. At its simplest, this is
clearest with respect to the kind of search strat-
egy used in the algorithms. Present formula-
tions conflate the choice of search strategy with
the other aspects of the algorithm (such as how
subsequent nodes in the search space are com-



puted); our approach separates out these differ-
ent facets of the algorithms, and makes it much
easier to see that the choice of search strategy
is an independent decision. Consequently, for
example, we can easily experiment with a vari-
ant of the 1R algorithm that uses breadth-first
search rather than depth-first search.

So far, we have used the framwework
to express the most widely-known algorithms
in the literature. Preliminary examination of
the algorithms in (Krahmer et al., 2003), (van
Deemter and Krahmer, forthcoming), and (Ho-
racek, 2004) suggests that these will also be
relatively straightforward to express within the
framework described here. As we capture more
algorithms in the framework, our intention is to
tease out an inventory of basic constituent ele-
ments which can then be reassembled and inte-
grated in different ways, so that we can derive a
better understanding of the nature of the prob-
lem of referring expression generation.
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