
Implementing a lexicalised statistical parser

Corrin Lakeland, Alistair Knott
Department of Computer Science

University of Otago
New Zealand

{lakeland,alik}@cs.otago.ac.nz

Abstract

Statistical parsers are extremely complex sys-
tems, yet papers describing them almost always
only discuss theoretical issues instead of imple-
mentation issues. This paper attempts to ad-
dress the imbalance by describing the imple-
mentation issues faced in building a state-of-
the-art statistical parser. In the process, we will
describe our own implementation of a statistical
parser.

1 Introduction

Between 1996 and 1999, Michael Collins devel-
oped a statistical parser (Collins, 1996; 1999)
which has become tremendously influential in
NLP. Collins’ thesis and published papers dis-
cuss the theoretical underpinnings of his system
in a great deal of detail; he devotes considerable
space to describing and justifying the grammar
formalism and the probability model which his
parser uses. His description of his parsing algo-
rithm is much less detailed; it is given as a set of
pseudocode routines in an appendix. However,
the scale and complexity of a lexicalised statis-
tical parser is such that implementing this pseu-
docode presents significant software engineering
difficulties. The pseudocode actually disguises
many of the interesting optimisations present
in Collins’ system. As far as we can tell, no-
body has published how to actually implement
such a system. The aim of this paper is to de-
scribe the important software engineering issues
involved in implementing a lexicalised statisti-
cal parser, using the parser we implemented as
an example. What we found was that if you
ever consider performance a secondary consid-
eration then the parser will go so slow as to be
impossible to debug. Because of this, we will
concentrate on the efficiency of algorithms not
so much to improve on Collins’, but just to get
a working system.

We will begin in Section 2 by describing
Collins’ probability model. In Section 3 we de-

scribe Collins’ parsing algorithm in high-level
detail. The remainder of the paper describes
our way of implementing the difficult parts of
this algorithm. The chart data structure is de-
scribed in Section 4; the generation of probabili-
ties from the probability model in Section 5; the
search strategy used by the parser is described
in Section 6; Some general advice about soft-
ware engineering in building a statistical parser
is discussed in Section 7. And we conclude by
noting that our parser performs almost the same
as Collins’ in Section 8.

2 Collins’ probability model

The key idea in any statistical parser is to asso-
ciate probabilities with grammatical rules. The
probability of any given parse tree is then sim-
ply the product of the probabilities of all the
rules applied in creating this tree. However, in
practice, the probability of a parse tree being
the correct parse of a sentence depends not just
on the rules which are applied, but on the words
which appear at the leaves of the tree. To illus-
trate, consider this well-known example of syn-
tactic ambiguity:

(1) The man saw the dog with the telescope.

The PP with the telescope can either modify the

dog (as a relative clause) or the verb saw (as an
adverbial). Intuitively, the latter reading should
be preferred; we expect events of seeing to in-
volve telescopes more frequently than dogs. The
notion of a lexical head is useful in spelling out
this intuition. We expect a VP headed by the
verb saw to be quite frequently modified by a
PP involving the word telescope in a represen-
tative corpus, while we expect a NP headed by
dog only rarely to be modified by a PP involv-
ing the word telescope in such a corpus. We
begin in Section 2.1 by describing a formalism
for capturing this idea.

2.1 Unary and dependency productions

How can we modify our grammar to include the
appropriate lexical information? A useful solu-
tion, originally proposed by Black et al. (1992),
basically involves a huge increase in the num-
ber of phrases in the grammar. Instead of sim-
ply having a phrase NP, we need one phrase
for each possible headword of an NP: i.e. NP-
headed-by-dog, NP-headed-by-telescope, and so
on. At this point, unfortunately, we are faced
with a data sparseness problem: we are unlikely
to find sufficient counts for individual produc-
tions, even with a very big corpus. The problem
is largely due to Zipf’s law; most words in the
language only occur very infrequently, so most
grammatical categories, when tagged with an
open-classed headword, will be fairly rare. The
problem is compounded by the fact that many
grammars allow a node to take several children.
If each child is already rare, then the combina-
tion of n such children will be exponentially so.
With low counts, we cannot be confident in the
probabilities we derive.

We will consider the problem due to Zipf’s
law in Section 2.3. However, the problem of
multiple children can be addressed by finding
a way of splitting a parse tree into events that
are smaller than single context-free rule appli-
cations. A useful idea, originally proposed by
Magerman (1995), is to break each single rule
application into several components: a unary

production which takes a phrase and gener-
ates its head constituent, and a set of depen-

dency productions which take a phrase and
its head constituent, and generate the remain-
ing child constituents, either to the left or the
right of the head. The occurrence of a parent
node decomposing into a set of children is now
represented using the kinds of events shown in
Figure 1.

Parent

Head

Parent

Left sibling . . . Head

Figure 1: Unary and dependency productions

The conditional probabilities we are inter-
ested in are the probability of a head constituent
given its parent (for a unary production) and
the probability of a sibling constituent given
its parent and its head (for a dependency pro-
duction). These probabilities can be estimated
from relative frequencies of events.

P(Head|Parent) =
Count(Head, Parent)

Count(Parent)

The notation here needs some explanation. If
you know the parent and you are trying to de-
rive the probability for a given head, you can
estimate the probability by counting the num-
ber of times that head occurs as the head of
that parent, and dividing by the total number of
times that parent occurs. The categories ‘head’
and ‘parent’ are descriptions of constituents,
which could be given at different levels of de-
tail. If we are building a lexicalised grammar,
these descriptions will each include a headword,
as well as a grammatical category. The data
sparseness problem due to Zipf’s law is now re-
duced; unary productions only involve one lex-
ical item, and dependency productions only in-
volve two.

2.2 Collins’ probabilistic grammar

Collins’ probabilistic grammar is expressed in
terms of unary and dependency productions, as
just described. Of course, he includes more in-
formation about these productions than we ex-
pressed in the above equations. As well as a
head word for each constituent, he includes in-
formation about the part of speech of this word:
the head tag. He calls the grammatical cate-
gory the head nonterminal, to distinguish it
from the tag. For the dependency productions,
he distinguishes between complement and ad-

junct siblings of a head (a complement sibling
is tagged ‘-C’), and includes a subcategorisa-

tion frame representing the complements that
the head needs. He also includes a measure of
the distance between the head and sibling con-
stituents. To explain Collins’ representation of
trees, we once again refer to a simple example
tree — see Figure 2. In this figure, only the
nodes pointed at by arrows take part in repre-
senting events.

NP−C

DT NN VB NP−C

a mousechasedcatThe

VP

S
Left tag (L)t

Left nonterminal (L)NT Parent (P)

Head tag (t)

Head word (w)

Head nonterminal (H)

Distance ():
adjacency = true
verb = false

Left subCat (LC): {NP−C}

wLeft word (L)

Figure 2: Collins’ event representation

This figure shows the fields used to represent
the dependency event of an NP-C attaching as
a left sister to the head VP of a parent S node.
Collins stores this event by encoding the terms
pointed to with arrows in the figure. At this
point, the event simply is the co-occurence of
these values for these data fields. To represent a
unary production, such as the generation of VP
from the parent S node, we just need the terms
on the right-hand side of Figure 2. To represent
a subcat production, such as the generation of
the VP’s left subcategorisation frame (in this
case, a bag containing one item, NP-C), we use
the same terms as the unary event, plus one
additional field: a bag of nonterminals.

The probabilities we need to compute for
unary, subcat and dependency productions can
now be given more precisely, in the following
three equations.

Punary(H |P,w, t)
Psubcat(LC |H,P,w, t)
Pdep(Lnt, Lw, Lt |P,H,w, t,∆, LC)

2.3 Collins’ event representation

To compute the above probabilities, we need to
derive appropriate relative frequencies of events
occurring in the WSJ corpus. Given that some
events might be rare, or nonexistent, in this cor-
pus, Collins uses a backoff technique. Basi-
cally, we estimate the probability of a very pre-
cisely specified event by looking up a less pre-
cisely specified one. For instance, the unary
event in Figure 2 where it was decided VP
should form the head of a sentence, would be
as follows:

Punary(V P |S, chased, V B)

while a backed-off version of the event might
leave out the head word chased:

Punary(V P |S, V B)

Collins makes use of three levels of backoff for
all the events he represents: Level 1 contains all
the terms pointed to in Figure 2, Level 2 drops
a headword, and Level 3 drops everything ex-
cept for nonterminals. To compute the proba-
bility of an event, its numerator, denominator,
and a weighting factor are looked up at all three
levels of backoff, and the resulting probabilities
are interpolated using the weighting factors. In
summary, to derive the probability of an event,
we must perform nine separate lookups of event
counts in a database of events derived from the
WSJ corpus.

2.4 Preprocessing the WSJ

The WSJ corpus is the main source of train-
ing data for statistical parsers. The trees in the
WSJ do not include information about head-
words or complements, both of which are fun-
damental to Collins’ approach. So Collins first
has to add this information, using heuristics
based on the syntactic and semantic annota-
tions which are present. These heuristics are too
numerous to doucment here, but a typical exam-
ple would be that noun-phrases search right to
left for their head child and prefer nouns. After
applying the heuristics, he then has to trans-
form the trees into a database of events to be
counted when computing probabilities. While
these preprocessing routines are relatively sim-
ple compared to the parser, Collins has not
released his preprocessor, and it is the least
documented part of the system, so it is useful
to document it; interested readers are referred
to Lakeland (forthcoming), where preprocessing
code is given in detail.

3 Collins’ parsing algorithm

We now present the high-level structure of the
parsing algorithm.

Very briefly, in words, here is what happens.
In the top-level function parse, we begin by
initialising the chart with a set of complete

edges, each of which is one word from the input
string, and a set of incomplete edges, each of
which is created by one or more unary produc-
tions on one of the complete edges. A com-
plete edge is one that will not be expanded fur-
ther. Then we call the function combine on
every set of adjacent edges in the chart. The
combine function attempts to join every pair
of adjacent edges, using a dependency produc-
tion, where the parent edge is incomplete and
the child edge is complete. This is done by
the functions join follow and join precede.
Whenever two edges are successfully joined, the
new complex edge is added to the chart; then
this edge is expanded using unary productions
(considering both a single unary production and
chains of two or three unary productions), and
adds these to the chart. This is done by the
function add singles stops. The new edges
which have been added to the chart will be
found by subsequent calls to combine. Eventu-
ally, edges will be created which span the whole
input string; when we have found all of these,
we select the complete parse with highest prob-
ability.

parse(sentence)

initialise(sentence)

for start = 0 to length
for end = start + 1 to length

for split = start + 1 to end {
left = spanning(start,split)

right = spanning(split+1,end)

combine(left,right)
}

combine(left, right) {
foreach (l left)

foreach (r right) {
if (!l.complete && r.complete)

joined = join_follow(l,r)

if (l.complete && !r.complete)
joined = join_precede(l,r)

add_singles_stops(joined)
}

}

join_follow(left,right) {

e = new edge(left)
e.add_child(right,at_end)

e.prob *= right

e.prob *= dep_prob(left,right)
chart.add(e)

}

join_precede(left,right) {

(as per join follow)
}

add_singles_stops(edges,depth=5) {

if (depth == 0) return edges

foreach (e edges)
e_stop += add_stop(e)

foreach (e e_stop)

e_ns += add_singles(e)
add_singles_stops(e_ns,depth-1)

}

add_singles(e) {

foreach (parent nonterminals)
foreach (lc subcats)

foreach (rc subcats)
if(grammar(e,parent,lc,rc)) {

result = unary(e,parent,lc,rc)

chart.add(result)
results += result

return results
}

Figure 3: Simplified parser pseudocode

Looking at the pseudocode it is hard to
see where the implementation difficulty lies.
The answer can be seen by counting loops:
parse contains three loops; combine contains
two; add singles stops contains one; and
add singles contains three. Since these func-
tions are all nested, the parser has nine nested
loops. To address this complexity, two things
are needed. Firstly, in general, we want to im-
plement everything efficiently, so that the al-
gorithm is as fast as possible. But as well
as efficiency considerations, we also need to
build some genuine shortcuts into the algo-
rithm, by applying search heuristics which
discard edges unlikely to be in the final parse.
Search heuristics are applied in two places in the
parsing algorithm: a beam search algorithm
is used in add singles stops to stop unlikely
unary productions from being generated; and
dynamic programming is used in the chart
insertion routine to discard an edge if a more
probable edge covering the same span already
exists. These two issues — code efficiency and
implementating heuristics — are what we focus
on in the remainder of the paper.

4 The chart data structure

The goal of the chart is to store and provide
access to all the edges covering each span of the
input string. The grammar is very large because
it contains a separate rule for each headword
in each production, and because of this a great
many edges cover each span. This means that
the wrong choice of chart data structure will
make parsing impossibly slow.

The most natural way of implementing such a
data structure would be as a three dimensional
array, in which the first two dimensions specify
the start and end of the span respectively, and
the last dimension stores the edges. Unfortu-
nately, we do not know how many edges will be
needed for any given span of the input string,
which makes allocating such an array impossible
(or at least extremely wasteful). To get around
this problem, note that the flow of control of the
parsing algorithm means that edges with a given
start and end position in the input string are
added consecutively. This means that we can
store the chart as a huge one dimensional array
of edges, with a two dimensional index array

of pointers indicating where the set of edges as-
sociated with each span are stored. There is
then no wasted space in the chart, and we still
have constant time access to any span.

A related optimisation comes from noting
that the control structure of the complete func-
tion means that we always process one complete
edge and one incomplete edge, so it would be
more efficient if we could loop over all complete
edges and all incomplete edges separately. It
thus makes sense to have two separate charts,
one for complete edges and one for incomplete
edges.

Another optimisation relates to the use of
a very simple dependency grammar within the
complete algorithm. Whenever two edges are
joined, we must compute the dependency prob-
ability for the join operation. If this probability
is zero, there is no need to store the edge. In
general we cannot predict when a dependency
event will have a probability of zero in advance,
but there is one exception: we can look at the
nonterminal head of the parent and sibling, and
if this combination was never seen in the train-
ing corpus then we know the dependency event
will have a probability of zero. The optimi-
sation involves precomputing a simple depen-
dency grammar specifying which nonterminal
categories are found in dependency productions
in the WSJ. (For instance, the top production
in Figure 2 would allow a parent S whose head
child is VP to have an NP-C as a left child.)
Now, in the combine function, we iterate over
every left and every right edge consistent with
this simple grammar. To permit efficient access
to grammatically consistent edges in the chart,
we add a third dimension to the index array, to
hold the edge’s parent nonterminal.

Another kind of optimisation in the chart
comes from noting that it is possible for two
different phrases to have the same representa-
tion as events in Collins’ probability model. For
instance, note in Figure 2 that Collins’ event
language makes no reference to the Det phrase
associated with the subject NP-C cat. Since the
goal of the parser is to find the single best parse,
if we ever have two phrases with the same rep-
resentation at a given span in the chart, we can
simply discard the one with lower probability;
it will never be involved in the best parse of the
sentence. This is known as the Viterbi opti-

misation. A closely related optimisation is to
discard any edge with a probability significantly
lower than the best edge over this span, since it
is very unlikely that a parse involving this edge
will outscore a parse involving the most likely
edge for this span. These last two optimisations
are examples of the dynamic programming

approach.

5 Computing probabilities

As mentioned in Section 2.3, to compute proba-
bilities, Collins derives nine counts — that is, he
looks up the number of times nine different sub-
events have occurred in the database of events
derived from the WSJ corpus. This database
cannot be stored as an indexed array since there
is no obvious index; we therefore make use of the
standard way of storing large data sets, hash ta-
bles. The training data requires storing around
fifty million events, and parsing a single sen-
tence requires many millions of probabilities to
be computed. Because performance is so critical
it is worth being careful about the implementa-
tion details.

Firstly, there is no need to store a hash table
for every type of event. Instead we can use a sin-
gle huge hashtable and include the type of event
in the key. This does not make the system in-
herently faster but does make it much easier to
control the density of the hashtable which will
lead to performance improvements. Secondly, it
is conventional in hashtables to store both the
key and value in the table so that hash collisions
can be detected but here the hash key is many
bytes and so it is more appropriate to just ig-
nore collisions and accept that probabilities will
be slightly incorrect. Finally, over ninety per-
cent of probabilities computed in the parser are
used more than once, so by storing all generated
probabilities in a ‘cache’ hashtable, the speed of
the whole system can be improved by an order
of magnitude.

6 Implementing the beam search

The function add singles stops includes three
nested loops and is itself called recursively
about five times. While none of these loops
is dependent on the size of the input sentence
(i.e. the function is O(1)), an unconstrained
implementation would result in approximately
20005 edges being created (the number of non-
terminals times the number of possible left sub-
categorisation frames times the number of right
subcategorisation frames, recursively called five
times). Even if these edges were discarded by
the chart on creation, the time taken to create
them would make it impossible to parse a sim-
ple sentence. To resolve this, Collins only ex-
pands edges likely to be part of the final parse.
Collins’ thesis notes he uses a constrained best
first search known as a beam search for this

process. The benefit of this is that instead of
an unmanageable number of nodes being cre-
ated, perhaps only a few hundred are created
(of which dynamic programming in the chart
will still discard all but a handful).

Search generally involves creating new nodes
for each child being expanded. But as is men-
tioned in Section 7, allocating memory is a com-
putationally expensive operation and is unde-
sirable in a program where efficiency is criti-
cal. Since a beam always has exactly n nodes
on it, it seems intuitively obvious that beam-
search could be implemented without allocat-
ing memory but it proves surprisingly difficult
to do efficiently. Our implementation of beam
search uses skiplists (Pugh, 1989). Skiplists
are a variant on linked lists in which a number
of ‘next’ pointers are kept on each node instead
of just one. These extra pointers allow the al-
gorithm to ‘skip’ along the list and lead to in-
sertion and access times of O(lg n) (the same
as binary search, but much simpler to imple-
ment). As an extension to Pugh’s idea, we im-
plemented double-ended skiplists (analogous to
doubly-linked lists). This gives O(1) access and
insertion to both the start and end of the list.

Having developed a suitable data structure,
we apply it to beam search. By allocating n+1
nodes for a beam of length n, we can pro-
vide add singles with an empty node in O(1)
by simply returning the last node in the list
(technically, these functions are not O(1) but
O(lg(lg(n)) due to pointer management code,
but this closely approximates 1 for even huge
values of n). In practice, insertions are almost
always at the start or the end of the list (both
approximately O(1)). When they are at other
parts of the list, insertion is an O(lg n) opera-
tion.

The obvious comparison for this approach
would be using a heap, as a heap is the data
structure most commonly used to implement
priority queues. Using an array based heap
(since the size of the queue is bounded) we can
access the front in O(1), but to remove the last
node and reinsert is O(lg n). Compared to this
implementation, skiplists are somewhat more
efficient at O(lg(lg n)).

Overall, double-ended skiplists have proven
to be an interesting and efficient method of im-
plementing beam-search for large n. Where n is
low, it is probably more efficient to simply use a
doubly-linked list but Collins’ noted he used a
beam size of 10,000, and so a more sophisticated

approach is called for. After implementing the
skiplists search, Collins released his code and it
is very interesting to compare his approach; it
turns out he does not actually implement clas-
sical beam-search, but instead uses an array of
edges being expanded with a threshold — if an
edge is a certain amount worse than the best
then it is discarded. This is significantly simpler
and somewhat more efficient than my approach.
However it would perform very poorly anywhere
where the heuristic evaluation improves as we
move away from the start state.

7 General software engineering
issues

The core difficulty in implementing a statistical
parser is that it processes a vast amount of data.
The event file created by the preprocessor con-
tains perhaps fifty million events; the beam is
searching through perhaps ten thousand local
possibilities; and the chart contains hundreds
of thousands of ambiguous partial parses. All
this means that we must keep code as efficient
as possible throughout the development pro-
cess, or the parser will simply fail. In addition,
that sophisticated code and data file verification
techniques are crucial, because small bugs can
have far-reaching consequences. In this section,
we present some of the software development
lessons we have learned in building our parser.

7.1 Start by solving a smaller problem

A lexicalised statistical parser is a very com-
plex system, where a single poor choice results
in a program that is too slow to test. How-
ever, building a part-of-speech (POS) tagger has
many of the same issues as a statistical parser
but without the asymptotic complexity. We
found it was useful to begin by building a full
reimplementation of Collins’ probability model
which was only used for POS tagging (Lakeland
and Knott, 2001). This enabled about half of
the system to be verified.

7.2 Choice of programming language

Initially our parser was implemented in LISP,
because it is a language ideally suited to both
tree processing and prototyping. It was far
too slow, and while various optimisations could
make it fast, it was obvious that the easiest ap-
proach would be to reimplement using a lan-
guage capable of breaking the rules built into
high-level programming languages, in which al-
location of memory can be done by hand, point-
ers can be manipulated directly, and shortcuts

can be hacked into the control structure of the
program.

It is worth explaining why direct memory
management is essential. Allocation of memory
is an extremely slow function and any program
desiring efficiency must not allocate memory in-
side its inner loop. By preallocating data struc-
tures (e.g. allocating all the memory for the
chart and the beam before parsing begins), it is
possible to avoid any memory allocation during
the core parsing loops, saving a great deal of
time. Languages such as Java, C# and Python
are therefore a bad idea; their automatic mem-
ory management (normally a key selling point)
is precisely what we need to sidestep to im-
plement an efficient parser. Consequently, like
Collins, we chose to implement the parser in C,
which provides low-level memory management
support. (However, for preprocessing the cor-
pus, we stuck with LISP, since it is not time
critical.)

7.3 Version control

Anybody building a nontrivial program will use
a source code control system such as CVS or
subversion. But we found that naive use is in-
sufficient – for instance we frequently found im-
provements to the preprocessor would break the
parser since it depended on the older format for
the data files. We also needed to make use of
‘branching’.

Another related step was the development of
a build script. There are a large number of steps
involved in converting the treebank and other
data into a format suitable for parsing. It is rel-
atively easy to perform these steps sequentially.
However that means any change to one of the
earlier steps (such as a tweak to the tokeniser)
requires every subsequent step to be repeated.
Since there is usually output from the previous
version lying around, it was often the case that
output files from different versions of the code
would be used at the same time — leading to
subtle errors.

Finally, version control only applies to files
but we often found that we needed to write
almost identical blocks of code, but often we
could not write the code as a general func-
tion which decided its behaviour based on ar-
guments and writing the same code twice in-
variably leads to bugs being fixed in one version
but not in another. Our solution to this was to
use source code preprocessing so that our sin-
gle ‘meta’ version generates multiple functions,

each with slightly different logic. We used the
tool funnelweb for this purpose.

7.4 Efficiency versus debuggability

It is often the case that the most efficient data
structure is harder to debug. For instance, our
hash keys can be easily compared to the data
used in generating the key and so a bug in key
generation is easily identifiable while Collins’
keys bear too little correspondence to data and
so cannot be easily debugged but they can be
generated faster. Similarly, Collins uses array
offsets to refer to edges where we use pointers
which will make our code slightly faster, but it
makes tracking an edge through parsing much
easier in Collins’ system.

‘Magic numbers’ are another area in which
bugs can easily creep into the system — for in-
stance, setting the maximum number of nonter-
minals to 100 might be correct at first, but later
adding -C complements could easily overflow
this and lead to data corruption. We managed
to avoid many of the problems here by automat-
ically generating the declarations of constants
from the input files, so any change to the in-
put files will automatically appear in the source
code. Similarly, many functions in the probabil-
ity model take a dozen or so parameters and get-
ting these in the wrong order will not cause any
typecast errors since they are all integers, it will
just generate invalid output. This problem was
avoided by implementing basic datatypes as dif-
ferent classes so that incorrect orders does result
in typecast errors. Curiously, Collins uses magic
numbers everywhere and I often wondered how
he managed to debug them in his parser.

7.5 Debugging methodology and test

suites

Debugging the parser turned out to be ex-
tremely difficult. It is not so hard to detect the
presence of a bug, but isolating where in the
process this bug is introduced can take a week.
In a normal program a bug can be isolated by
stepping through its operations on simple input
but with a statistical parser there are far too
many operations to do this for even the most
trivial input. The best approach we found was
to spend a lot of effort detecting bugs as soon as
possible after they are introduced. For instance,
if a bug in the tokeniser leads to a small number
of events not being generated then it is critical
to detect this problem during the generation of
the event file rather than during the execution
of the parser.

In order to facilitate this, after testing ev-
ery function we wrote an automated test suite
that rechecks functions every time the system
is built. For example, the probability model
can be checked by comparing the counts it de-
rives to those produced with grep. If a bug
is later introduced in the input to this func-
tion then it will likely cause some testcase to
fail. Similarly, the system is liberally scattered
with assert statements that perform every-
thing from internal bounds checking to checking
that the skiplist is in sorted order and still has n

elements. As a last resort, we also made exten-
sive use of the memprotect kernel call to lock
any data that was not currently being edited
(such as the hash tables). This allowed us to
catch a number of bugs where we had forgotten
an assertion.

A final comment is that we found high-level
debugging to be much less useful than low-level
debugging. For instance, by examining the sen-
tences the parser performs poorly on it may be
possible to infer it has a problem. But this ap-
proach turned out to be significantly more time-
consuming than simply verifying every function
independently, mainly because the parser was
too big to find where the bug was after the high-
level approach found the existence of a bug.

8 Conclusion: results of our own
parser

The parser we implemented performed almost
identically to Collins’ as regards precision and
recall (84.5% as opposed to 85%). In over
95% of cases, our parser produces exactly the
same output as Collins’, with differences partly
caused by small undocumented tweaks Collins
made, such as using the headword from a child
instead of the parent during coordination, and
partly due to some late design changes made
as our understanding of Collins’ algorithm im-
proved. Our system is significantly more mod-
ifiable than Collins. This is because it was de-
signed with that in mind, and also because all of
the seperate components used are tightly seper-
ated out into different classes with well specified
interactions. Because of this, my system is well
suited as a platform for further research.

References

Black, E., Jelinek, F., Lafferty, J., Magerman,
D., Mercer, R., and Roukos, S. (1992). To-
wards history-based grammars: using richer
models for probabilistic parsing. In M. Mar-

cus, editor, Fifth DARPA Workshop on

Speech and Natural Language, Arden Confer-
ence Center, Harriman, New York.

Collins, M. (1996). A new statistical parser
based on bigram lexical dependencies.

Collins, M. (1999). Head-driven statistical mod-

els for natural language parsing . Ph.D. thesis,
Computer Science Department, University of
Pennsylvania.

Lakeland, C. (forthcoming). Lexical Approaches

to Backoff in Statistical Parsing . Ph.D. the-
sis, Department of Computer Science, Uni-
versity of Otago.

Lakeland, C. and Knott, A. (2001). Pos
tagging in statistical parsing. In Proc. of

the Australasian Language Technology Work-
shop, Sydney, Australia.

Magerman, D. M. (1995). Statistical decision-
tree models for parsing. In Proc. of the 33 rd

Annual Meeting of the Association for Com-

putational Linguistics. Cambridge, MA, 26–
30 Jun 1995 .

Pugh (1989). Skip lists: A probabilistic alterna-
tive to balanced trees. In WADS: 1st Work-

shop on Algorithms and Data Structures.

