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Connectionist models inherently include features and exhibit behaviors which are difficult to achieve with tradi- 
tional logic-based models. Among the more important  of such characteristics are 1) the ability to compute nearest 
match rather than requiring unification or exact match; 2) learning; 3) fault tolerance through the integration of 
overlapping modules, each of which may be incomplete or fallible, and 4) the possibility of scaling up such systems 
by many orders of magnitude, to operate more rapidly or to handle much larger problems, or both. However, it 
is unlikely that  connectionist models will be able to learn all of language from experience, because it is unlikely 
that a full cognitive system could be built via learning from an initially random network; any successful large-scale 
connectionist learning system will have to be to some degree "genetically" prewired. 

1 P r o l o g u e  

My current research centers on memory-based reasoning, a connectionism-informed descendant of associative memory 
ideas. Memory-based reasoning holds considerable promise, both for cognitive modeling and for applications. In 
this model, rote memories of episodes play the central role, and schemas are viewed as epiphenomenal. This model 
is described in considerable detail in [35] and will not be explained here; however, as I have prepared this paper, it 
has served as the background against which .I have critically examined both connectionist and more traditional AI 
paradigms. 

2 C o n n e c t i o n i s t  a n d  H e u r i s t i c  S e a r c h  M o d e l s  

For most of its history, the heuristic search, logic, and "physical symbol system" [19] paradigms have dominated 
AI. AI was conceived at about the same time that  protocol analysis was in vogue in psychology [16t; such protocols 
could be implemented on the then-new von Neumann machines fairly well. Protocol analysis suggested that people 
operate by trial and error, using word-like objects as primitive units. AI has stuck almost exclusively with heuristic 
search and symbol systems, using them in a wide variety of natural language processing models and programming 
languages, ranging from ATN's, most other natural language parsing systems, and planning based models (e.g. for 
pragmatics) to Prolog and Planner [9]. 

Meanwhile, it seems highly implausible that  anything resembling heuristic search is used much below the level of 
consciousness; certainly no one would believe that  a neuron executes heuristic search. The small amount of evidence 
marshalled to support the hypothesis of subconscious search [15] could be explained in many other ways. Such 
models as Marcus' deterministic parser [29] have at tempted to move away from heuristic search, yet were cast largely 
in heuristic search terms 1 

1one problem that Marcus' parser was at tempting to solve was the mismatch between psychological data  and 
heuristic search models; garden path sentences were an exception, where backtracking seems an appropriate model. 
Even there, it seems that to understand garden path sentences, people generally back up and completely reprocess 
sentences, using a "trace" stored in a sort of audio buffer [26]. 
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Connectionist systems have stirred a great deal of excitement for a number of reasons: 1) They 're  novel. Con- 
nectionism seems to be a good candidate for a major new paradigm in a field where there have only been a handful 
of paradigms (heuristic search; constraint propagation; blackboard systems; marker passing). 2) They have cognitive 
science potential.  While connectionist neural nets are not necessarily analogous to neurons, they do seem brain-like 
and capable of modeling a substantial  range of cognitive phenomena.  3) Connectionist systems exhibit non-trivial 
learning; they are able to self-organize, given only examples as inputs. 4) Connectionist systems can be made fault- 
tolerant and error-correcting, degrading gracefully for cases not encountered previously [37]. 5) Appropriate and 
scalable connectionist hardware is rapidly becoming available. This is important ,  both for actually testing models, 
and because the kinds of brain and cognitive models that  we build are very heavily dependent on available and imag- 
inable hardware [23] [1]; and 6) Connectionist architectures also scale well, in that  modules can be interconnected 
rather easily. This is because messages passed between modules are activation levels, not symbolic messages. 

Nonetheless, there are considerable difficulties still ahead for connectionist models. It is probably premature to 
generalize based on our experience with them to date. So far all systems built have either learned relatively small 
numbers of items, or they have been toy systems, hand built for some particular task. The kinds of learning shown 
to date are hardly general. It seems very unlikely to me that  it will be possible for a single, large, randomly wired 
module to learn everything. If we want to build a system out of many modules, we must devise an architecture for 
the system with input and output  specifications for modules and /or  a plan for interconnecting the internal nodes 
of different modules. Finally, connectionist models cannot yet argue that  they offer a superset of traditional AI 
operations: certain operations such as variable binding cannot yet be performed efficiently in connectionist networks. 

2.1  B e s t  M a t c h  v s .  E x a c t  M a t c h  

It is not possible to specify completely the conditions for any sort of decision--including decisions on natural  language 
understanding and pars ing-- in  a manageable set of logical rules and heuristics. By inserting a sentence in an 
appropriate context, even extremely rare or unusual structures and interpretations can be made to seem the most 
natural.  

Rule systems can be constructed to handle such cases, but at the expense of requiring arbitrarily large numbers 
of rules with arbitrarily long sets of conditions. Connectionist models inherently integrate all available evidence, 
most pieces of which will be irrelevant or only weakly relevant for most decisions. Moreover, one ctoes not have 
to find logically necessary and sufficient conditions; connections between actions and the facts of the world can be 
represented as statistical correlations. In Feldman's terms [32], connectionist reasoning is evidential rather than 
logical. 

Reasoning that  is apparently logical can arise from connectionist models in at least two ways. 1) A programmer  
can encode individual alternatives for lexical selection, phrase structure, etc. as nodes which compete with or support  
each other; the processing of a sentence then involves clamping the values of some input word nodes, and allowing 
the whole network to settle. For "regular" inputs, strong pathways, which "collaborate" in reinforcing each other, 
can give the appearance of rule-like behavior. Given similar inputs, one can expect similar outputs. Most natural  
language connectionist work has been rule-like in this sense [37] [3] [33] [31]. 2) The appearance of rule-based behavior 
can also result from learned connectionist networks or associative memory  models. If a system can find the activation 
pattern or memory which is closest to a given current event or situation, it can exhibit highly regular behavior. Such 
systems degrade gracefully. Unlike connectionist models, associative memory models can also tell when a new event 
does not correspond well to any previous event, they can "know that  they don ' t  know" I35]. (See also Grpssberg [7].) 

In contrast, systems based on logic, unification and exact matching are inevitably brittle (i.e. situations even 
slightly outside the realm of those encoded in the rules fail completely, and the system exhibits discontinuous 
behavior). We see no way to repair this property of such systems. 2 

2See also [211 and [22]. 
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2.2 M a t c h  w i t h  Psycho log i ca l  R e s u l t s  
Psychological research on categorization [34][25][13][2] has shown that  category formation cannot be explained in 
a classical logical model. Tha t  is, the conditions of category membership are not merely logical conditions (result 
of expressions with connectives ' and '  'or '  and 'not '}. Rather,  categories are organized around "focus concepts" or 
prototypes,  and exhibit graceful degradation for examples that  differ from the category focus along any of a number 
of possible dimensions [13]. Connectionist systems seem well-suited for modeling such category structure (though 
such modeling has not been explored very extensively [11]). 

2.3 M a s s i v e  Para l l e l i sm 
Restricted natural  language is not natural  language. One cannot make progress in natural  language understanding 
unless one can run large problems and see the results of experiments in finite time. Small scale experiments (involving 
on the order of hundreds of nodes or less} are inadequate to really explore the issues in computat ional  linguistics. 
One needs a model with a realistically large vocabulary and range of possible word senses and interpretations, in 
order to convincingly argue that  the model is appropriate  and adequate. 

Fortunately, dramat ic  strides are being made in computer  architecture at just the time that connectionist the- 
oretical models are being explored. These fields are not unrelated. Connectionist models [24][4] served as initial 
inspiration to designers of new generation hardware (e.g.[10]), though many parallel architectural ideas were already 
being explored in the pursuit of greater speed. This followed the realization that  we were approaching asymptotes  
for speeds possible with serial uniprocessors. I believe that  developing appropriate hardware will prove to be the 
easiest part  of building full-scale natural  language systems. 

2.4 I n t e g r a t i o n  of M o d u l e s  
Connectionist models allow for much easier integration of modules than is possible with symbolic/heurist ic search- 
based systems. Generally, symbolic systems require either a very simple architecture (e.g. the tradit ional phone t ic - -  
syn tac t i c - - seman t i c - -p ragmat i c  b o t t o m - u p  model of classical linguistics} or a sophisticated communications facility 
(for example, a blackboard [20]} in order to build a system composed of many mod~iles. In the blackboard model, 
each module must in general have a generator for complex messages as well as an interpreter for such messages. 

In contrast, connectionist models allow an integration of modules by links that  can go directly to the nodes 
(concepts or microfeatures} that  co-vary with the activation pat terns of other modules, and messages themselves can 
be extremely simple (e.g. numerical activation levels, or markers I8]}. In some cases, link weights can be generated 
based on an analysis of the statistical correlations between various concepts or structures; in other cases weights 
can be generated by learning schemes [27]. Nonetheless, still there is a potentially large set of cases where weights 
will have to be generated by hand, or by yet-to-be-discovered learning methods. Clearly, every concept cannot be 
connected to every other directly. (This would require n 2 connections for n concepts, where n is at least 10G.} Some 
solutions have been suggested (e.g. the microfeature ideas in [37]} but none seems easy to program. 

2.5 Fault  Tolerance  
Since a large number  of nodes (or modules) have a bearing on a single connectionist d.ecision (e.g. lexical selection 
or prepositional phrase attachment} then not all of them need to be active ill order to make a correct decision; some 
variation of values can be tolerated. In a modular connectionist model, input information can be fed to syntactic, 
semantic, and pragmatic  modules directly. Thus, an unparsed string of terms can suggest a part icular  topic area 
to a pragmat ic  context module, even without any syntactic processing; such topical context can in turn be used 
to influence lexical selection. At the same time, the range of possible syntactic structures allows certain lexical 
assignments and precludes others; semantic information such as case role restrictions likewise can have a bearil~g on 
lexical selection (see [37] for further discussion}. 
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2.6 Learning 
Learning is one of the most exciting aspects of connectionist models for both the AI and psychology communities. For 
example, the back propagation error learning I26] and Boltzmann machine [30] methods have proved quite effective 
for teaching inpu t /ou tpu t  patterns. However, such learning is not a panacea. Some researchers believe that  one can 
start  with a very large randomly interconnected and weighted network, and potentially generate a fully intelligent 
system, simply by presenting it with enough raw sensory inputs and corresponding desired outputs.  I doubt it: the 
learning space corresponding to raw sensory inputs (e.g. visual and audio) is astronomically large, and learning to 
perceive via feedback ("punishment / reward"?)  seems both cognitively and technically unrealistic. 

3 Key Prob lems  for Connect ionist  Language Models  

3.1 Learning from "Experience" 
As suggested above, learning is both a key achievement of connectionism, and a key open issue for a full cognitive 
system. 

The difficulty for cognitive learning theories of any sort is the observation that perception has to be prior to 
language. In turn, perception itself seems to require a priori,  innate organization. Just how large must an innate 
component be? I believe it will have to account at least for such phenomena as figure/ground organization of scenes, 
the ability to appropriately segment events, (both to separa te  them from the experiences that  precede and follow 
them and also to articulate their internal structure); the notion of causality; and general structuring principles for 
creating memory instances. This suggests to me that  a large portion of a learning system must be wired initially, 
probably into fairly large internally regular modules, which are subject only to rudimentary learning via parameter  
adjustment.  This conclusion follows from the observation that  if brains could completely self-organize, this method, 
being simpler than present reality, would have been discovered first by evaluation. My guess is that  such total 
self-organization would require far too long, since it requires exploring vast space of weight assignments. Even given 
extensive a prior i  structure, humans require some twenty years to mature.  I think that  we cannot avoid programming 
cognitive architecture. 

3.2 Variable Binding 
Some operations that  programmers  have traditionally taken for granted have proven difficult to map onto connection- 
ist networks. One such key operation is variable binding. Assume that  we have devised a good schema representation 
or learning system, and stored a number of schemas: what happens when a new natural language input triggers a 
schema and we would like to store this instance in long-term memory? It seems that we need to create an instance 
of the schema with the particular agents, objects, patients, so on, bound to case roles. It is not obvious how this 
ought to be done in a connectionist model. Some experiments in designing general connectionist schemes for variable 
binding have been performed I36], but these methods seem very awkward and expensive in terms of the numbers of 
nodes and links required to store even a single relation. 

Another possibility is to make a copy of the entire schema structure for each new instance~ but this seems to lack 
neurophysiological plausibility. A more appealing direction is suggested both by Minsky I18][17] and Feldman and 
Shastri [5} [32]: a very large number of nodes are randomly connected to each other such that  nodes that  have never 
been used before form a kind of pool of potential  binding units for novel combinations of schemas and role fillers. 
When a new instance is encountered, all the participants which are active can be bound together using one or more 
of these previously unutilized binding nodes, and those nodes can then be removed from the "free binders pool ~. 

There are important  open questions in any case: for example, are different modules responsible for sentence 
processing, perceptual processing, short-term memory and long-term memory [6]? If so, how are these interconnected 
and "controlled"? If not, how can we account for these different processing modes? 
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3.3 Timing and Judging When Sentence Processing is Complete 
Connectionist systems for language processing have assumed that  sentences will be preceded and followed by quiescent 
periods. The resulting pat tern of activations on nodes in the system can then be read whenever appropriate,  and 
the time sequence of node actuations interpreted as desired (Pollack and I are guilty of this sloppiness). There is 
a real difficulty in knowing how and when one should interpret the internal operation of a system. Should we wait 
until activation levels on nodes have settled, i.e. changed less than a certain amount on each cycle? Should we wait 
for activity to either be completely on or completely off in various nodes? Should we wait a fixed amount of t ime 
and then evaluate the network activation pat tern? If so, how do we set the clock rate of the relaxation network 
relative to the rate at which input words arrive? What  should be done to the activation pat tern of a set of nodes 
after a sentence has been "understood"? Should the levels be zeroed out? Should they remain active? Under what 
circumstances and by what methods should items be transferred to (or transformed into) long-term memory? Are 
the nodes used in understanding the same ones responsible for long-term memory storage or is there some sort of 
copying or transfer mechanism? 

All these questions need crisper answers and principles. It does seem clear that  processing must be approximately 
complete soon after the completion of a sentence so that  processing of the next sentence can start,  since sentences 
or clauses can occur with very little separation. This suggests that  expectations play a important  role in sentence 
processing and further that  really important  material  ought to appear  or be expected well before the end of a sentence 
if the processing of the next sentence is not to be interfered with. 

3.4 Debugging and Understanding Systems 
In general, it is difficult to tell exactly what systems with distributed knowledge representations know or don' t  know. 
Such systems cannot explain what they know, nor can a person look at their structures and tell whether they are in 
fact complete and robust or not, except in very simple cases [12]. The only way to test such systems is by giving them 
examples and judging on the basis of their performance whether they are suitable or not. This problem is a quite 
serious one for systems that  are designed to be fault tolerant. A fault tolerant system, for instance, might usually 
work quite wel}, even though one module is seriously defective; however in marginal  cases, a counterproductive 
module could cause performance to be much worse than it ought to be. The problems of debugging a system in 
which some modules may compensate for and cover up the errors of others seem quite intractable. 

3.5 Generating Applications 
Natural  language processing work has suffered and still suffers from a shortage of good ideas for applications. We 
don ' t  know quite what we'd do with such systems even if we could successfully build them. Ill part this is because 
the actions that  a computer  can easily carry out are radically different from those that  a person can do. In part the 
difficulty is that  typing is a slow and error prone input method; if speech were available, natural  language processing 
might rapidly increase in importance.  On the other hand, bulk processing of text databases [28] seems a promising 
applications area. 

It may be impossible to use human-like learning methods for connectionist systems (or for any computer-based 
language processing system). It may also be undesirable. Unlike people, computers are capable of remembering 
literally the contents of large text files and complete dictionaries while at the same time they lack perceptual and 
reasoning facilities. The combination suggests that  infant-like learning may not be appropriate  for computer-based 
language systems, even if a brain-like machine can be built. 
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