A Computational Account of Some
Constraints on Language

Mitchell Marcus
MIT Artificial Intelligence Laboratory

In a series of papers over the last several years,
Noam Chomsky has argued for several specific properties of
language which he claims are universal to all human
languages [Chomsky 73, 75, 76]. These properties, which
form one of the cornerstones of his current linguistic theory,
are embodied in a set of constraints on language, a set of
restrictions on the operation of rules of grammar.

This paper will outline two arguments presented at
length in [Marcus 77] demonstrating that important sub-
cases of two of these constraints, the Subjacency Principle
and the Specified Subject Constraint, fall out naturally from
the structure of a grammar interpreter called PARSIFAL,
whose structure is in turn based upon the hypothesis that a
natural language parser needn't simulate a nondeterministic
machine. This "Determinism Hypothesis" claims that natural
language can be parsed by a computationally simple
mechanism that uses neither backtracking nor pseudo-
parallelism, and in which all grammatical structure created
by the parser is "indelible" in that it must all be output as
part of the structural analysis of the parser's input. Once
built, no grammatical structure can be discarded or altered
in the course of the parsing process.

v

In particular, this paper will show that the
structure of the grammar interpreter constrains its operation
in such a way that, by and large, grammar rules cannot
parse sentences which violate either -the Specified Subject
Constraint or the Subjacency- Principle. The component of
the grammar interpreter upon which this result principally
depcnds is motivated by the Determinism Hypothesis; this
result thus provides indirect evidence for the hypothesis.
This result also depends upon the use within a
computational framework of the closely related notions of
annotated surface structure and trace theory, which also
derive from Chomsky's recent work.

(it should he noted that these constraints are far
from universally accepted. They are currently the source of
much controversy; for various critiques of Chomsky's
position see [Postal 74; Bresnan 76]. However, what is
presented below does not argue for these constraints, per
se, but rather provides a different sort of explanation,
based on a processing model, of why the sorts of sentences
which these constraints forbid are bad. While the exact
formulation of these constraints is controversial, the fact
that some set of constraints is needed to account for this
range of data is generally agreed upon by most generative

236

grammarians. The account which | will present below is
crucially linked to Chomsky's, however, in that trace theory
is at the heart of this account.)

Because of space limitations, this paper deals only
with those grammatical processes characterized by the
competence rule "MOVE NP"; the constraints imposed by
the grammar interpreter upon those processes
characterized by the rule "MOVE WH-phrase" are discussed
at length in [Marcus 77] where | show that the behavior
characterized by Ross's Complex NP Constraint [Ross 67]
itself follows directly from the structure of the grammar
interpreter for rather different reasons than the behavior
considered in this section. Aiso because of space
limitations, | will not attempt to show that the two
constraints | will deal with here necessarily follow from the
grammar interpreter, but rather only ‘that they naturally
follow from the interpreter, in particular from a simple,
natural formulation of a rule for passivization which itself
depends heavily upon the structure of the interpreter.
Again, necessity is argued for in detail in [Marcus 77].

This paper will first outline the structure of the
agrammar interpreter, then present the PASSIVE rule, and
then finally show how Chomsky's constraints "fall out" of
the formulation of PASSIVE,

Before proceeding with the body of this paper, two
other important properties of the parser should be
mentioned which will not be discussed here. Both are
discussed at length in [Marcus 77]; the first is sketched
as well in [Marcus 78]:

1) Simple rules of grammar can by written for this
interpreter which elegantly capture the significant
generalizations behind not only passivization, but also such
constructions as yes/no questions, imperatives, and.
sentences with existential there. These rules are
reminiscent of the sorts of rules proposed within the
framework of the theory of generative grammar, despite the
fact that the rules presented here must recover underlying
structure given only the terminal string of the surface form
of the sentence.

2)The grammar interpreter provides a simple
explanation for the difficulty caused by "garden path"
sentences, such as "The cotton clothing is made of grows in
Mississippi." Rules can be written for this interpreter to

resolve local structural ambiguities which might seem to
require nondeterministic parsing; the power of such rules,
however, depends upon a parameter of the mechanism.
Most structural ambiguities can be resolved, given an
appropriate setting of this parameter, but those which
typically cause garden paths cannot.

The Structure of PARSIFAL
PARSIFAL maintains two major data structures: a
pushdown stack of incomplete constituents called the active
node stack, and a small three-place constituent buffer which
contains constituents which are complete, but whose higher
level grammatical function is as yet uncertain.

Figure 1 below shows a snapshot of the parser's
data structures taken while parsing the sentence "“John
should have scheduled the meeting.". Note that the active
node stack in shown growing downward, so that the
structure of the stack reflects the structure of the
emerging parse tree. At the bottom of the stack is an
auxiliary node labelled with the features modal, past, etc.,
which has as a daughter the modal "should". Above the
bottom of the stack is an S node with an NP as a daughter,
dominating the word "John". There are two words in the
buffer, the verb "have" in the first buffer cell and the word
"scheduled"” in the second. The two words "the meeting”
have not yet come to the attention of the parser. (The
structures of form "(PARSE~AUX CPOOL)" and the like wili be
explained below.)

The Active Node Stack
51 (S DECL MAJOR S) / (PARSE-AUX CPOOL)
NP : (John)
AUX1 (MODAL PAST VSPL AUX) / (BUILD-AUX)
MODAL : (shoutd)

The Buffer

1: WORD3 (*HAVE VERB TNSLESS AUXVERB PRES
V-3S) : (have)
2: WORD4 (*SCHEDULE COMP-0BJ VERB INF-OBJ

V-3S ED=EN EN PART PAST ED) : (scheduied)

Yet unseen words: the meeting .

Figure 1 ~ PARSIFAL's two major data structures.

The constituent buffer is the heart of the grammar
interpreter; it is the central feature that distinguishes this
parser from all others. The words that make up the parser's
input first come to its attention when they appear at the
end of this buffer after morphological analysis. Triggered
by the words at the beginning of the buffer, the parser may
decide to create a new grammatical constituent, create a
new node at the bottom of the active node stack, and then
begin to attach the constituents in the buffer to it. After
this new constituent is completed, the parser will then pop
the new constituent from the active node stack; if the
grammatical role of this larger structure is as vyet
undetermined, the parser will insert it into the first cell of
the buffer. The parser is free to examine the constituents
in the buffer, to act upon them, and to otherwise use the
buffer as a workspace.

While the buffer allows the parser to examine

237

some of the context surrounding a given constituent, it does
not allow arbitrary look-ahead. The length of the buffer is
strictly limited; in the version of the parser presented here,
the buffer has only three cells. (The buffer must be
extended to five cells to allow the parser to build NPs in a
manner which is transparent to the "clause level" grammar
rules which will be presented in this paper. This extended
parser still has a window of only three cells, but the
effective start of the buffer can be changed through an
"attention shifting mechanism" whenever the parser is
building an NP. In effect, this extended parser has two
"logical" huffers of length three, one for NPs and another
for clauses, with these two buffers implemented by allowing
an overlap in one larger buffer. For details, see [Marcus
77])

Note that each of the three cells in the buffer can
hold a grammatical constituent of any type, .where a
constituent is any tree that the parser has constructed
under a single root node. The size of the structure
underneath the node is immaterial; both "that" and "that
the big green cookie monster's toe got stubbed" are
perfectly good constituents once the parser has
constructed a subordinate clause from the iatter phrase.

The constituent buffer and the active node stack
are acted upon by a grammar which is made up of
pattern/action rules; this grammar can be viewed as an
augmented form of'Newell and Simon's production systems
[Newell & Simon 72]. Each rule is made up of a pattern,
which is matched against some subset of the constituents
of the buffer and the accessible nodes in the active node
stack (about which more will be said below), and an action,
a sequence of operations which acts on these constituents.
Each rule is assigned a numerical priority, which the
grammar interpreter uses to arbitrate simulitaneous matches.

The grammar as a whole is structured into rule
packets, clumps of grammar rules which can be activated
and deacfivated as a group; the grammar interpreter only
attempts to match rules in packets that have been
activated by the grammar. Any grammar rule can activate a
packet by associating that packet with the constituent at
the bottom of the active node stack. As long as that node
is at the bottom of the stack, the packets associated with
it are active; when that node is pushed into the stack, the
packets remain associated with it, but become active again
only when that node reaches the bottom of the stack. For
example, in figure 1 above, the packet BUILD-AUX is
associated with the bottom of the stack, and is thus active,
while the packet PARSE-AUX is associated with the S node
above the auxiliary.

The grammar rules themselves are written in a
language called PIDGIN, an English-like formal language that
is translated into LISP by a simple grammar translator based
on the notion of top-down operator precedence [Pratt 73].
This use of pseudo-English is similar to the use of pseudo-
English in the grammar for Sager's STRING parser [Sager
73]. Figure 2 below gives a schematic overview of the
organization of the grammar, and exhibits some of the rules
that make up the packet PARSE-AUX.

A few comments on the grammar notation itself are

in order. The general form of each grammar rule is:

{Rule <name)> priority: <priority) in {(packet>
<pattern> --> <action>}

Each pattern is of the form :

[<description of 1st buffer constituent>] [<2nd>]
[<3rd>]

The symbol "=", used only in pattern descriptions, is to be
read as "has the feature(s)". Features of the form
"*{word>" mean "has the root <word>", e.g. "*have" means
"has the root "have"". The tokens "1st", "2nd", "3rd" and
"C" (or "c") refer to the constituents in the 1st, 2nd, and
3rd buffer positions and the current active node (i.e. the
bottom of the stack), respectively. The PIDGIN code of the
rule patterns should otherwise be fairly self-explanatory.

Priority Pattern Action
Description of:
1st 2nd 3rd The Stack
PACKET1
5: [1 I 11] --> ACTION1
10: I] [1 ~--> ACTION2
10: 1 I 11 It] --> ACTION3
PACKET2
10: [1 (] --> ACTIONG
15: [1 { 1 --> ACTIONS

(a) - The structure of the grammar.

{RULE START-AUX PRIORITY: 10. IN PARSE-AUX

[=verb] -->

Create a new aux node.

Label C with the meet of the features of 1st and pres,
past, future, tnsless.

Activate build-aux.}

{RULE TO-INFINITIVE PRIORITY: 10. IN PARSE-AUX
[=*to, auxverb] [=tnsless] ~->

Label a new aux node inf.

Attach 1st to C as to.

Activate build-aux.}

(b) - Some grammar rules that initiate auxiliaries.

Figure 2
The parser (i.e. the grammar interpreter
interpreting some grammar) operates by attaching

constituents which are in the buffer to the constituent at
the bottom of the stack; functionally, a constituent is in the
stack when the parser is attempting to find its daughters,
and in the buffer when the parser is attempting to find its
mother. Once a constituent in the buffer has been
attached, the grammar interpreter will automatically remove
it from the buffer, filling in the gap by shifting to the left the
constituents formerly to its right. When the parser has
completed the constituent at the bottom of the stack, it
pops that constituent from the active node stack; the
constituent either remains attached to its parent, if it was
attached to some larger constituent when it was created, or
else it falls into the first celi of the constituent buffer,

238

shifting the buffer to the right to create a gap (and causing
an error if the buffer was already full). If the constituents
in the buffer provide sufficient evidence that a constituent
of a given type should be initiated, a new node of that type
can be created and pushed onto the stack; this new node
can also be attached to the node at the bottom of the
stack before the stack is pushed, if the grammaticail
function of the new constituent is clear when it is created.

This structure is motivated by several properties
which, as is argued in [Marcus 77], any ‘'non-
nondeterministic" grammar interpreter must embody. These
principles, and their embodiment in PARSIFAL, are as follows:

1) A deterministic parser must be at least partially data
driven. A grammar for PARSIFAL is made up of
pattern/action rules which are triggered when
constituents which fulfii specific descriptions
appear in the buffer.

2) A deterministic parser must be able to reflect
expectations that follow from the partial structures
built vp during the parsing process. Packets of
rules can be activated and deactivated by
grammar rules to reflect the properties of the
constituents in the active node stack.

3) A deterministic parser must have some sort of
constrained look-ahead facility. PARSIFAL's buffer
provides this constrained look-ahead. Because the
buffer can hold several constituents, a grammar
rule can examine the context that follows the first
constituent in the buffer before deciding what
grammatical role it fills in a higher level structure.
The key idea is that the size of the buffer can be
sharply constrained if each location in the buffer
can hold a single compiete constituent, regardless
of that constituent's size. It must be stressed that
this look-ahead ability must be constrained in some
manner, as it is here by limiting the length of the
buffer; otherwise the "determinism" claim is
vacuous.

The General Grammatical Framework - Traces

The form of the structures that the current
grammar builds is based on the notion of Annotated Surface
Structure. This term has been used in two different senses
by Winograd [Winograd 71] and Chomsky [Chomsky 73];
the usage of the term here can he thought of as a
synthesis of the two concepts. Following Winograd, this
term will be used to refer to a notion of surface structure
annotated by the addition of a set of features to each node
in a parse tree. Following Chomsky, the term wili be used to
refer to a notion of surface structure annotated by the
addition of an element called trace to indicate the
"underlying position" of "shifted" NPs.

In current linguistic theory, a trace is essentially a
"phonologically null" NP in the surface structure
representation of a senlence that has no daughters but is
"hound” to the NP that filled that position at some levei of
underlying structure. In a sense, a trace can be viewed as
a "dummy" NP that serves as a placeholder for the NP that
earlier filled that position; in the same sense, the trace's

binding can be viewed as simply a pointer to that NP. it
should be stressed at the outset, however, that a trace is
indistinguishable from a normal NP in terms of normal
grammatical processes; a trace is an NP, even though it is
an NP that dominates no lexical material.

There are several reasons for choosing a properly
annotated surface structure as a primary output
representation for syntactic analysis. While a deeper
analysis is needed to recover the predicate/argument
structure of a sentence (either in terms of Fillmore case
relations [Fillmore 68] or Gruber/Jackendoff "thematic
relations" [Gruber 65; Jackendoff 72]), phenomena such as
focus, theme, pronominal reference, scope of quantification,
and the like can be recovered only from the surface
structure of a sentence. By means of proper annotation, it
is possible to encode in the surface structure the "deep"
syntactic information necessary to recover underlying
predicate/argument relations, and thus to encode in the
same formalism both deep syntactic relations and the
surface order needed for pronominal reference and the
other phenomena listed above.

Some examples of the use of trace are given in
Figure 3 immediately below.

(la)
(1b)

What did John give to Sue?
What did John give t to Sue?

John gave what to Sue.

(lc)

(2a)
(2b)

The meeting was scheduied for Wednesday.
The meeting was scheduled t for Wednesday.

(2c) V scheduled a meeting for Wednesday.

(3a)John was believed to be happuy.
(3b}John was believed [g t to be happyl.

Figure 3 — Some examples of the use of trace.

One use of trace is to indicate the underlying
position of the wh-head of a question or relative clause,.
Thus, the structure built by the parser for 3.1a would
include the trace shown in 3.1b, with the trace's binding
shown by the line under the sentence. The position of the
trace indicates that 3.1a has an underlying structure
analogous to the overt surface structure of 3.1c.

Another use of trace is to indicate the underlying
position of the surface subject of a passivized clause. For
example, 3.2a will be parsed into a structure that includes a
trace as shown as 3.2b; this trace indicates that the
subject of the passive has the underlying position shown in
3.2c. The symbol "V" signifies the fact that the subject
position of (2¢) is filled by an NP that dominates no lexical
structure. (Following Chomsky, | assume that a passive
sentence in fact has no wunderlying subject, that an
agentive "by NP" prepositional phrase originates as such in
underlying structure.) The trace in (3b) indicates that the
phrase "to be happy", which the brackets show is really an
embedded clause, has an underlying subject which is
identical with the surface subject of the matrix S, the

239

clause that dominates the embedded complement. Note
that what is conceptually the underlying subject of the
embedded clause has been passivized into subject position
of the matrix S, a phenomenon commonly called "raising".
The analysis of this phenomenon assumed here derives from
[Chomsky 73]; it is an aiternative to the classic analysis
which involves "raising" the subject of the embedded
clause into object position of the matrix S before
passivization (for details of this later analysis see [Postal
747).

The Passive Rule
In this section and the next, | will briefly sketch a
solution to the phenomena of passivization and "raising" in
the context of a grammar for PARSIFAL. This section will
present the Passive rule; the next section will show how
this rule, without alteration, handles the "raising”" cases.

Let us begin with the parser in the state shown in
figure 4 below, in the midst of parsing 3.2a above. The
analysis process for the sentence prior to this point is
essentially parallel to the analysis of any simple declarative
with one exception: the rule PASSIVE-AUX in packet BUILD-
AUX has decoded the passive morphology in the auxiliary
and given the auxiliary the feature passive (although this
feature is not visible in figure 4). At the point we begin our
example, the packet SUBJ-VERB is active.

The Active Node Stack (1. deep)
S21 (S DECL MAJOR) / (SS-FINAL)
NP : (The meeting)
AUX : (was)
VP : |
C: VP17 (VP) / (SUBJ-VERB)
VERB : (scheduled)

The Buffer
1: PP14 (PP) : (for Wednesday)
2: WORD162 (*. FINALPUNC PUNC) : (.)

Figure 4 - Partial analysis of a passive sentence:
after the verb has been attached.

The packet SUBJ-VERB contains, among other ruies, the rule
PASSIVE, shown in figure 6 below. The pattern of this rule
is fulfilled if the auxiliary of the S node dominating the
current active node (which will always be a VP node if
packet SUBJ-VERB is active) has the feature passive, and
the S node has not yet been labelled np-preposed. (The
notation "** C" indicates that this rule matches against the
two accessible nodes in the stack, not against the contents
of the buffer.) The action of the rule PASSIVE simply
creates a trace, sets the binding of the trace to the
subject of the dominating S node, and then drops the new
trace into the buffer.

{RULE PASSIVE IN SUBJ-VERB
[** c; the aux of the s above c is passive;

the s above c is not np-preposed] -->
Label the s above ¢ np-preposed.
Create a new np node lahelled trace.
Set the binding of ¢ to the np of the s above c.
Drop c.}

Figure 5 - Six lines of code captures np-preposing.

The state of the parser after this rule has been executed,
with the parser previously in the state in figure 4 above, is
shown in figure 6 below. S21 is now labeiled with the
feature.np-preposed, and there is a trace, NP53, in the first
buffer position. NP53, as a trace, has no daughters, but is
bound to the subject of S21.

The Active Node Stack (1. deep)
S21 (NP-PREPOSED S DECL MAJOR) / (SS-FINAL)
NP : (The meeting)
AUX : (was)
VP : |}
C: VP17 (VP) / (SUBJ-VERB)
VERB : (scheduled)

The Buffer
1: NP&3 (NP TRACE) : bound to: (The meeting)
2 PP14 (PP) : (for Wednesday)
3: WORD162 (*. FINALPUNC PUNC) : (.)

Figure 6 - After PASSIVE has been executed.

Now rules will run which will activate the two
packets SS-VP and INF-COMP, given that the verb of VP17
is “schedule". These two packets contain rules for parsing
simple objects of non-embedded Ss, and infinitive
complements, respectively. Two such rules, each of which
utilize an NP immediately following a verb, are given in figure
7 below. The rule OBJECTS, in packet SS-VP, picks up an
NP after the verb and attaches it to the VP node as a
simple object. The rule INF-S-START1, in packet INF-COMP,
triggers when an NP is followed by "to" and a tenseless
verb; it initiates an infinitive complement and attaches the
NP as its subject. (An example of such a sentence is "We
wanted John to give a seminar next week".) The rule INF-
S-START1 must have a higher priority than OBJECTS
because the pattern of OBJECTS is fulfilled by any situation
that fulfills the pattern of INF-S-START1; if both rules are in
active packets and match, the higher priority of INF-S-
START1 will cause it to be run instead of OBJECTS.

{RULE OBJECTS PRIORITY: 10 IN §5-VP
[=np] -->
Attach 1st to c as np.}

{RULE INF-S-START1 PRIORITY: 5. IN INF-COMP
[=np] [=*to,auxverb] [=tnsless] -->

Label a new s node sec, inf-s.

Attach 1st to ¢ as np.

Activate parse-aux.}

Figure 7 - Two rules which utilize an NP foliowing a verb.

240

While there is not space to continue the example
here in detail, note that the rule OBJECTS will trigger with
the parser in the state shown in figure 6 above, and wiil
attach NP53 as the object of the verb "schedule. OBJECTS
is thus totally indifferent both to the fact that NP63 was
not a regular NP, but rather a trace, and the fact that NP53
did not originate in the input string, but was placed into the
buffer by grammatical processes. Whether or not this rule
is executed is absolutely unaffected by differences
between an active sentence and its passive form; the
analysis process for either is identical as of this point in the
parsing process. Thus, the analysis process will be exactly
parallel in both cases after the PASSIVE rule has been
exccuted. (I remind the reader that the analysis of passive
assumed above, following Chomsky, does not assume a
process of "agent deletion”, "subject postposing" or the
like.)

Passives in Embedded Complements - "Raising"

The reader may have wondered why PASSIVE
drops the trace it creates into the buffer rather than
immediately attaching the new trace to the VP node. As we
will see below, such a formulation of PASSIVE also correctly
analyzes passives like 3.3a above which involve "“raising”,
but with no additional compliexity added to the grammar,
correctly capturing an important generalization about
English. To show the range of the generalization, the
example which we will investigate in this section, sentence
(1) in figure 8 below, is yet a level more complex than 3.3a
above; its analysis is shown schematically in 8.2, In this
example there are two traces: the first, the subject of the
embedded clause, is bound to the subject of the major
clause, the second, the object of the embedded S, is bound
to the first trace, and is thus ultimately bound to the
subject of the higher S as well. Thus the underlying
position of the NP "the meeting"” can be viewed as being
the object position of the emhedded S, as shown in 8.3.

(1)The meeting was believed to have been scheduled for
Wednesday.

(2)The meeting was believed [g t to have been scheduled
t for Wednesday]

(3) Vv believed [V to have scheduled the meeting for
Wednesday].

Figure 8 - This example shows simple passive and raising.

We begin our example, once again, right after
"helieved" has been attached to VP20, the current active
node, as shown in figure 9 below. Note that the AUX node
has been labelled passive, although this feature is not
shown here.

The Active Node Stack (1. deep)
S22 (S DECL MAJOR) / (SS-FINAL)
NP : (The meeting)
AUX : (was)
VP
C: VP20 (VP) / (SUBJ-VERB)
VERB : (believed)

The Buffer
1: WORD166 (*TO PREP AUXVERB) : (to)
2: WORD167 (*HAVE VERB TNSLESS AUXVERB

PRES ...) : (have)

Figure 9 - After the verb has been attached.

The packet SUBJ-VERB is now active; the PASSIVE
rule, contained in this packet now matches and is executed.
This rule, as stated above, creates a trace, binds it to the
subject of the current clause, and drops the trace into the
first cell in the buffer. The resulting state is shown in
figure 10 below.

The Active Node Stack (1. deep)
S22 (NP-PREPOSED S DECL MAJOR) / (SS-FiNAL)
NP : (The meeting)
AUX : (was)
VPl
C: VP20 (VP) / (SUBJ-VERB)
VERB : (believed)

The Buffer
1: NP55 (NP TRACE) : bound to: (The meeting)
2: WORD 166 (*TO PREP AUXVERB) : (to)
3: WORD167 (*HAVE VERB TNSLESS AUXVERB

PRES ...} : (have)
Yet unseen words: been scheduled for Wednesday .

Figure 10 - After PASSIVE has been executed.

Again, rules will now be executed which will
activate the packet SS-VP (which contains the rule
OBJECTS_) and, since "believe" takes infinitive complements,
the packet INF-COMP (which contains INF-S-START1),
among others. (These rules will also deactivate the packet
SUBJ-VERB.) Now the patterns of OBJECTS and INF-S-
START1 will both match, and INF-S-START1, shown above in
figure 7, will be executed by the interpreter since it has
the higher priority. (Note once again that a trace is a
perfectly normal NP from the point view of the pattern
matching process.) This rule now creates a new S node
labelled infinitive and attaches the trace NP55 to the new
infinitive as its subject. The resulting state is shown in
figure 11 below.

241

The Active Node Stack (2. deep)
S$22 (NP-PREPOSED S DECL MAJOR) / (SS-FINAL)
NP : (The meeting) ’
AUX :-(was)
VP : {
VP20 (VP) / (SS-VP THAT-COMP INF-COMP)
VERB : (believed)
C: $23 (SEC INF-S S) / {PARSE-AUX)
NP : bound to: (The meeting)

The Buffer
1: WORD 166 (*TO PREP AUXVERB) : (to)
2: WORD167 (*HAVE VERB TNSLESS AUXVERB

PRES ...) : (have)
Yet unseen words: been scheduled for Wednesday .

Figure 11 - After INF-S-START1 has been executed.

We are now well on our way to the desired
analysis. An embedded infinitive has been initiated, and a
trace bound to the subject of the dominating S has been
attached as its subject, although no rule has explicitly
“lowered" the trace from one clause into the other.

The parser will now proceed exactly as in the
previous example. It will build the auxiliary, attach it, and
attach the verb "scheduled" to a new VP node. Once again
PASSIVE wili match and be executed, creating a trace,
binding it to the subject of the clause (in this case itself a
trace), and dropping the new trace into the buffer. Again
the rule OBJECTS will attach the trace NP57 as the object
of VP21, and the parse will then be completed by
grammatical processes which will not be discussed here. An
editted form of the tree structure which resuits is shown in
figure 12 below. A trace is indicated in this tree by giving
the terminal string of its uitimate binding in parentheses.

(NP-PREPOSED S DECL MAJOR)
NP: (MODIBLE NP DEF DET NP)
The meeting
AUX: (PASSIVE PAST V13S AUX)
was
VP: (VP)
VERB: believed
NP: (NP COMP))
S: (NP-PREPOSED SEC INF-S S)
NP: (NP TRACE) (bound* to: The meeting)
AUX: (PASSIVE PERF INF AUX)
to have bheen
vP: (VP)
VERB: scheduled
NP: (NP TRACE) (bound* to: The meeting)
PP: (PP)
PREP: for
NP: (NP TIME DOW)
Wednesday

Figure 12 - The final tree structure.

This - example demonstrates that the simple
formulation of the PASSIVE rule presented above,
interacting with other simply formulated grammatical rules

for parsing objects and initiating embedded infinitives,
allows a trace to be attached either as the object of a verb
or as the subject of an embedded infinitive, whichever is
the appropriate analysis for a given grammaticai situation.
Because the PASSIVE rule is formulated in such a way that
it drops the trace it creates into the buffer, iater rules,
already formulated to trigger on an NP in the buffer, wiil
analyze sentences with NP-preposing exactly the same as
those without a preposed subject. Thus, we see that the
availability of the buffer mechanism is crucial to capturing
this generalization; such a generalization can only be
stated by a parser with a mechanism much iike the buffer
used here.

The Grammar Interpreter and Chomsky's Constraints
Before turning now to a sketch of a computational
account of Chomsky's constraints, there are several
important limitations of this work which must be enumerated.

First of all, while two of Chomsky's constraints
seem to fall out of the grammar interpreter, there seems to
e no apparent account of a third, the Propositional island
Constraint, in terms of this mechanism.

Second, Chomsky's formulation of these
constraints is intended to apply to all rules of grammar, both
syntactic rules (i.e. transformations) and those rules of
semantic interpretation which Chomsky calls "rules of
construal", a set of shaliow semantic rules which govern
anaphoric processes [Chomsky 77]. The discussion here
will only touch on purely syntactic phenomena; the question
of how rules of semantic interpretation can be meshed with
the framework presented in this document has yet to be
investigated.

Third, the arguments presented below deal only
with English, and in fact depend strongly upon several facts
about English syntax, most crucially upon the fact that
English is subject-initial. Whether these arguments can be
successfully extended to other language types is an open
question, and to this extent this work must be considered
exploratory.

And finally, | will not show that these constraints
must be true without exception; as we will see, there are
various situations in which the constraints imposed by the
grammar interpreter can be circumvented. Most of these
situations, though, will be shown to demand much more
complex grammar formulations than those typically needed
in the grammar so far constructed. This is quite in keeping
with the suggestion made by Chomsky [Chomsky 77] that
the constraints are not necessarily without exception, but
rather that exceptions will be '"highly marked" and
therefore will count heavily against any grammar that
includes them.

The Specified Subject Constraint

The Specified Subject Constraint (SSC), stated
informally, says that no rule may involve two constituents
that are Dominated by different cyclic nodes unless the
lower of the two is the subject of an S or NP. Thus, no rule
may involve constituents X and Y in the structure shown in
figure 13 below, if o and (3 are cyclic nodes and Z is the
subject of o, Z distinct from X.

242

Lo Yol ZooXon D]

Figure 13 - SSC:
No rule can involve X and Y in this structure.

The SSC explains why the surface subject position
of verbs like "seems" and "is certain" which have no
underlying subject can be filled only by the subject and not
the object of the embedded S: The rule "MOVE NP" is free
to shift any NP into the empty subject position, but is
constrained by the SSC so that the object of the embedded
S cannot be moved out of that clause. This explains why
(a) in figure 14 below, but not 14b, can he derived from
14c¢; the derivation of 14b from 14c would violate the SSC.

(a) John seems to like Mary.
(b)*Mary seems John to like.
(c) V seems [John to like Mary]

Figure 14 - Some examples illustrating the SSC.

In essence, then, the Specified Subject Constraint
constrains the rule "MOVE NP" in such a way that only the
subject of a clause can be moved out of that clause into a
position in a higher S. Thus, if a trace in an annotated
surface structure is bound to an NP Dominated by a higher
S, that trace must fill the subject position of the lower
clause.

In the remainder of this section | will show that the
grammar interpreter constrains grammatical processes in
such a way that annotated surface structures constructed
by the grammar interpreter will have this same property,
given the formulation of the PASSIVE rule presented above.
In terms of the parsing process, this means that if a trace is
"lowered" from one clause to another as a result of a
"MOVE NP"-type operation during the parsing process, then
it will be attached as the subject of the second clause. To
be more precise, if a trace is attached so that it is
Dominated by some S node S1, and the trace is bound to an
NP Dominated by some other S node S2, then that trace will
necessarily be attached so that it fills the subject position
of S1. This is depicted in figure 15 below.

The Active Node Stack
f

§2..1/ ..
NP2
C: S1../..

NP: NP1 (NP TRACE) : bound to NP2

Figure 15 - NP1 must be attached as the subject of S1
since it is bound to an NP Dominated by a higher S.

Looking back at the complex passive exampie
involving "raising" presented above, we see that the
parsing process results in a structure exactly like that
shown above. The original point of the example, of course,
was that the rather simple PASSIVE rule handles this case
without the need for some mechanism to explicitly lower the
NP. The PASSIVE rule captures this generalization by

dropping the trace it creates into the buffer (after
appropriately binding the trace), thus allowing other rules
written to handle normal NPs (e.g. OBJECTS and INF-S-
START 1) to correctly place the trace.

This statement of PASSIVE does more, however,
than simply capture a ¢eneralization about a specific
construction. As | will argue in detail below, the behavior
specified by both the Specified Subject Constraint and
Subjacency foliows almost immediately from this formulation.
In [Marcus 77], | argue that this formulation of PASSIVE is
the only simple, non-ad hoc, formulation of this rule possible,
and that all other rules characterized by the competence
rule "MOVE NP" must operate similarly; here, however, | will
only show that these constraints follow naturally.from this
formulation of PASSIVE, leaving the question of necessity
aside. | will also assume one additional constraint below,
the Left-to-Right Constraint, which will be briefly motivated
later in this paper as a natural condition on the formulation
of a grammar for this mechanism.

The Left-to-Right Constraint: the constituents in the
buffer are (almost alwéys) attached to higher level
constituents in left-to-right order, i.e. the first
constituent in the buffer is (almost always)
attached before the second constituent.

I will now show that a trace created by PASSIVE
which is bound to an NP in one clause can only serve as the
subject of a clause dominated by that first clause.

Given the formulation of PASSIVE, a trace can be
"lowered" into one clause from another only by the indirect
route of dropping it into the buffer before the subordinate
ciause node is created, which is exactly how the PASSIVE
rule operates. This means that the ordering of the
operations is crucially: 1) create a trace and drop it into
the buffer, 2) create a subordinate S node, 3) attach the
trace to the newly created S node. The key point is that at
the time that the subordinate clause node is created and
becomes the current active node, the trace must be sitting
in the huffer, filing one of the three buffer positions. Thus,
the parser will he in the state shown in figure 16 below,
with the trace, in fact, most likely in the first buffer
position.

The Active Node Stack

C: §123 (S SEC ..) /..

The Buffer

NP123 (NP TRACE) : bound to NP in S above §123

Figure 16 - Parser state after embedded S created.

Now, given the L-to-R Constraint, a trace which is
in the buffer at the time that an embedded S node is first
created must be one of the first several constituents
attached to the S node or its daughter nodes. From the
structure of English, we know that the leftmost three
constituents of an embedded S node, ignoring topicalized
constituents, must either be

243

COMP NP AUX
or
NP AUX [yp VERB ...].

(The COMP node will dominate flags like "that" or "for" that
mark the beginning of a complement clause.) But then, if a
trace, itself an NP, is one of the first several constituents
attached to an embedded clause, the only position it can fill
will be the subject of the clause, exactly the empirical
consequence of Chomsky's Specified Subject Constraint in
such cases as explained above.

The L-to-R Constraint
Let us now return to the motivation for the L-to-R
Constraint.- Again, | will not attempt to prove that this
constraint must be true, but merely to show why it is
plausible.

Empirically, the Left-to-Right Constraint seems to
hold for the most part; for the grammar of English discussed
in this paper, and, it would seem, for any grammar of English
that attempts to capture the same range of generalizations
as this grammar, the constituents in the buffer are utilized
in left-to-right order, with a small range of exceptions. This
usage is clearly not enforced by the grammar interpreter as
presently implemented; it is quite possibie to write a set of
grammar rules that specifically ignores a constituent in the
buffer until some arbitrary point in the clause, though such a
set of rules would be highly ad hoc. However, there rarely
seems to be a need to remove other than the first
constituent in the buffer.

The one exception to the L-to-R Constraint seems
to be that a constituent C; may be attached before the
constituent to its left, C;;, if C; does not appear in surface
structure in its underlying position (or, if one prefers, in its
unmarked position) and if its removal from the buffer
reestablishes the unmarked order of the remaining
constituents, as in the case of the AUX-INVERSION rule
discussed earlier in this paper. To capture this notion, the
L-to-R Constraint can be restated as follows: All
constituents must be attached to higher level constituents
according to the left-to-right order of constituents in the
unmarked case of that constituent's structure.

This reformulation is interesting in that it would be
a natural consequence of the operation of the grammar
interpreter if packets were associated with the phrase
structure rules of an explicit "base component”, and these
rules were used as templates to build up the structure
assigned by the grammar interpreter. A packet of grammar
rules would then be explicitly associated with each symbol
on the right hand side of each phrase structure rute. A
constituent of a given type would then be constructed by
aclivating the packets associated with each node type of
the appropriate phrase structure rule in left-to-right order.
Since these base rules would reflect the unmarked I-to-r
order of constituents, the constraint suggested here would
then simply fall out of the interpreter mechanism.

Subjacency
Before turning to the Subjacency Principle, a few
auxiliary technical terms need to be defined: If we can

trace a path up the tree from a given node X to a given
node Y, then we say X is dominated by Y, or equivalently, Y
dominates X. If Y dominates X, and no other nodes intervene
(i.e. X is a daughter of Y), then Y immediately (or directly)
dominates X. [Akmajian & Heny 75]. One non-standard
definition will prove useful: | will say that if Y dominates X,
and Y is a cyclic node, i.e. an S or NP node, and there is no
other cyclic node Z such that Y dominates Z and Z
dominates ‘X (i.e. there is no intervening cyclic node Z
between Y and X) then Y Dominates X. '

The principle of Subjacency, informally stated,
says that no rule can invoive constituents that are
separated by more than one cyclic node. Let us say that a
node X is subjacent to a node Y if there is at most one
cyclic node, i.e. at most one NP or S node, between the
cyclic node that Dominates Y and the node X. Given this
definition, the Subjacency principle says that no rule can
involve constituents that are not subjacent.

The Subjacency principle impiies that movement
rules are constrained so that they can move a constituent
only into positions that the constituent was subjacent to,
i.e. only within the clause (or NP) in which it originates, or
into the clause (or NP) that Dominates that clause (...). This
means that if ¢, @, and ¢ in figure 17 are cytlic nodes, no
rule can move a constituent from position X to either of the
positions Y, where [,...X...] is distinct from [,X].

Lol goloer X J Y0]

Figure 17 - Subjacency:
No rule can involve X and Y in this structure.

Subjacency implies that if a constituent is to be
"lifted”" up more than one level in constituent structure, this
operation must be done by repeated operations. Thus, to
use one of Chomsky's examples, the sentence given in
figure 18a, with a deep structure analogous to 18b, must be
derived as follows (assuming that “is certain”, like "seems",
has no subject in underlying structure): The deep structure
must first undergo a movement operation that results in a
structure analogous to 18c, and then another movement
operation that results in 18d, each of these movements
leaving a trace as shown. That 18c is in fact an
intermediate structure is supported by the existence of
sentences such as 18e, which purportedly result when the
V in the matrix S is replaced by the lexical item "it", and
the embedded S is tensed rather than infinitival. The
structure givén in 18f is ruled out as a possible annotated
surface structure, because the single trace couid only be
left if the NP "John" was moved in one fell swoop from its
underlying position to its position in surface structure, which
would violate Subjacency.

(a) John seems to be certain to win.

(b) Vv seems [V to be certain [g John to win]]
(¢) vV seems [g John to be certain [t to win]]
(d) John seems [g ¢ to be certain [g t to win]]

(e) it seems that John is certain to win.

(f) John seems [g V to be certain [t to win]}

Figure 18 - An example demonstrating Subjacency.

244

Having stated Subjacency in terms of the abstract
competence theory of generative grammar, | now will show
that a parsing correlate of Subjacency follows from the
structure of the grammar interpreter. Specifically, I' will
show that there are only limited cases in which a trace
generated by a "MOVE-NP" process can be "lowered" more
than one clause, i.e. that a trace created and bound while
any given S is current must almost always be attached
either to that S or to an S which is Dominated by that S.

Let us begin by examining what it would mean to
lower a trace more than one clause. Given that a trace can
only be "lowered" by dropping it into the buffer and then
creating a subordinate S node, as discussed above,
lowering a trace more than one clause necessarily implies
the foliowing sequence of events, depicted in figure 19
helow: First, a trace NP1 must (a) be created with some S
node, S1. as the current S, (b) bound to some NP Dominated
by that S and then (c) dropped into the buffer. By
definition, it will be inserted into the first cell in the buffer.
(This is shown in figure 19a) Then a second S, S2, must be
created, supplanting S1 as the current S, and then yet a
third S, $3, must be created, becoming the current S. During
all these steps, the trace NP1 remains sitting in the buffer.
Finally, NP1 is attached under S3 (fig. 19b). By the
Specified Subject Constraint, NP1 must then attach to S3
as its subject.

The Active Node Stack

C S1 /
The Buffer
ist: NP1 (NP TRACE) : bound to NP Dominated by S1

(a) - NP1 is dropped into the buffer
while §1 is the current S.

The Active Node Stack

St../..
s2 .7 ..
C: S3 .../ ...
NP1 (NP TRACE) : bound to NP Dominated by S1
(b) - After S2 and S3 are created,

NP1 is attached to S3 as its subject (by the SSC).

Figure 19 - Lowering a trace more than 1 clause

But this sequence of events is highly uniikely. The
essence of the argument is this:

Nothing in the buffer can change between the time
that S2 is created and S3 is created if NP1 remains in the
buffer. NP1, like any other node that is dropped from the
active node stack into the buffer, is inserted into the first
buffer position. But then, by the L-to-R Constraint, nothing
to the right of NP1 can be attached to a higher level
constituent untit NP1 is attached. (One can show that it is
most unlikely that any constituents will enter to the left of
NP1 after it is dropped into the buffer, but | will suppress
this detail here; the full argument is included in [Marcus
771)

But if the contents of the buffer do not change
between the creation of S2 and S3, then what can possibly
motivate the creation of both S2 and S37? The contents of
the buffer must necessarily provide clear evidence that
both of these clauses are present, since, by the
Determinism Hypothesis, the parser must be correct if it
initiantes a constituent. Thus, the same three constituents in
the buffer must provide convincing evidence not only for
the creation of S2 but also for S3. Furthermore, if NP1 is to
hecome the subject of 83, and if S2 Dominates S3, then it
would seem that the constituents that follow NP1 in the
buffer must also be constituents of S3, since S3 must be
completed before it is dropped from the active node stack
and constituents can then he attached to S2. But then S2
must be created entirely on the basis of evidence provided
by the constituents of another clause (uniess S3 has less
than three constituents). Thus, it would seem that the
contents of the buffer cannot provide evidence for the
presence of both clauses unless the presence of S3, by
itself, is enough to provide confirming evidence for the
presence of S2. This would be the case only if there were,
say, a clausal construction that could only appear (perhaps
in a particular environment) as the initial constituent of a
higher clause. iIn this case, if there are such constructions,
a violation of Subjacency shouid be possibie.

With the one exception just mentioned, there is no
motivation for creating two clauses in such a situation, and
thus the initiation of only one such clause can be motivated.
But if only one clause is initiated before NP1 is attached,
then NP1 must be altached to this clause, and this clause is
necessarily subjacent-to the clause which Dominates the NP
to which it is bound. Thus, the grammar interpreter will
hehave as if it enforces the Subjacency Constraint.

As a concluding point, it is worthy of note that
while the grammar interpreter appears to bhehave exactiy as
if it were constrained by the Subjacency principle, it is in
fact constrained by a version of the Clausemate Constraint!
(The Clausemate Constraint, long tacitly assumed by
linguists but first explicitly stated, | believe, by Postal
[Postal 64], states that a transformation can only involve
constituents that are Dominated by the same cyclic node.
This constraint is at the heart of Postal's attack on the
constraints that are discussed above and his argument for a
"raising" analysis.) The grammar interpreter, as was stated
above, limits grammar rules from examining any node in the
aclive node stack higher than the current cyclic node,

which is to say that it can only examine clausemates. The.

trick is that a trace is created and bound while it is a
"clausemate"” of the NP to which it is bound in that the
current cyclic node at that time is the node to which that
NP is attached. The trace is then dropped into the buffer
and another S node is created, thereby destroying the
clauscmate relationship. The trace is then attached to this
new S node. Thus, in a sense, the trace is lowered from
one clause to another. The crucial point is that while this
lowering goes on as a resuit of the operation of the grammar
interpreter, it is only implicitly lowered in that 1) the trace
was never attached to the higher S and 2) it is not dropped
into the buffer because of any realization that it must be
"lowered"; in fact it may end up attached as a clausemate
of the NP to which it is bound - as the passive examples

245

presented earlier make clear. The trace is simply dropped
into the buffer because its grammatical function is not clear,
and the creation of the second S follows from other
independently motivated grammatical processes. From the
point of view of this processing theory, we can have our
cake and eat it too; to the extent that it makes sense to
map results from the realm of processing into the reaim of
compelence, in a sense both the clausemate/"raising® and
the Subjacency positions are correct.

Evidence for the Determinism Hypothesis

in closing, | would like to show that the properties
of the grammar interpreter crucial to capturing the behavior
of Chomsky's constraints were originally motivated by the
Determinism Hypothesis, and thus, to some extent, the
Determinism Hypothesis explains Chomsky's constraints.

The strongest form of such an argument, of course,
would be to show that (a) either (i) the grammar interpreter
accounts for all of Chomsky's constraints in a manner which
is conclusively universal or (ii) the constraints that it will
not account for are wrong and that (b) the properties of the
grammar interpreter which were crucial for this proof were
forced by the Determinism Hypothesis. If such an argument
could be made, it would show that the Determinism
Hypothesis provides a natural processing account of the
linguistic data characterized by Chomsky's constraints,
giving strong confirmation to the Determinism Hypothesis.

I have shown none of the above, and thus my
claims must be proportionately more modest. | have argued
only that important sub-cases of Chomsky's constraints
follow from the grammar interpreter, and while | can show
that the Determinism Hypothesis strongly motivates the
mechanisms from which these arguments follow, i cannot
show necessity. The extent to which this argument
provides evidence for the Determinism Hypothesis must thus
be left to the reader; no objective measure exists for such
matters.

The ability to drop a trace into the buffer is at the
heart of the arguments presented here for Subjacency and
the SSC as consequences of the functioning of the grammar
interpreter; this is the centrai operation upon which the
above arguments are based. But the buffer itself, and the
fact that a constituent can be dropped into the buffer if its
grammatical function is uncertain, are directly motivated by
the Determinism Hypothesis. Given this, it is fair to claim
that if Chomsky's constraints follow from the operation of
the grammar interpreter, then they are strongly linked to the
Determinism Hypothesis. if Chomsky's constraints are in
fact true, then the arguments presented in this paper
provide solid evidence in support of the Determinism
Hypothesis.

Acknowledgments
This paper summarizes one result presented in my
Ph.D. thesis; | would like to express my gratitude to the
many people who contributed to the technical content of
that work: Jon Allen, my thesis advisor, to whom | owe a
special debt of thanks, Ira Goldstein, Seymour Papert, Bill

Martin, Bob Moore, Chuck Rieger, Mike Genesereth, Gerry
Sussman, Mike Brady, Craig Thiersch, Beth Levin, Candy
Bullwinkle, Kurt VanLehn, Dave McDonald, and Chuck Rich.

This paper describes research done at the
Artificial Intelligence Laboratory of the Massachusetts
institute of Technology. Support for the laboratory's
artificial intelligence research is provided in part by the
Advanced .Research Projects Agency of the Department of
Defence under Office of Naval Research Contract NOOO14-
75-C-0643.

BIBLIOGRAPHY

Akmajian, A. and F. Heny [1975] An Introduction to the
Principles of Transformational Syntax, MIT Press,
Cambridge, Mass.

Bresnan, J. W. [1876] "Evidence for a Theory of Unbounded
Transformations", Linguistic Analysis 2:363.

Chomsky, N. [1973] "Conditions on Transformations", in S.
Anderson and P. Kiparsky, eds., A Festschrift for
Morris Halle, Holt, Rinehart and Winston, N.Y.

Chomsky, N. [1975] Reflections on Language, Pantheon, N.Y.

Chomsky, N.-[1976] "Conditions on Rules of Grammar",
Linguistic Analysis 2:303.

Chomsky., N. [1977] "On Wh-Movement", in A. Akmajian, P.
Culicover, and T. Wasow, eds.,, Formal Syntax,
Academic Press, N.Y.

Filimore, C. J. [1968] "The Case for Case" in Universals in
Linguistic Theory, E. Bach and R.,T. Harms, eds., Holt,
Rinehart, and Winston, N.Y.

Gruber, J. S. [1965] .Studies
unpublished Ph.D. thesis, MiT.

in lexical Relations,

Jackendoff, R. S. [1972] Semantic Interpretation in
Generative Grammar, MIT Press, Cambridge, Mass.

Marcus, M. P. [1977] A Theory of Syntactic Recognition for
Natural Language, unpublished Ph.D. thesis, MIT.

Marcus, M. P. [1978] "Capturing Linguistic Generalizations
in a Parser for English", in the proceedings of The 2nd
National Conference of the Canadian Society for
Computational Studies of Intelligence, Toronto, Canada.

Newell, A. and H.A. Simon [1972] Human Problem Solving,
Prentice-Hall, Englewood Cliffs, N.J.

Postal, P. M. [1974] On Raising, MIT Press, Cambridge,
Mass.

Pratt, V. R. [1973] "Top-Down Operator Precedence”, in the
proceedings of The SIGACT/SIGPLAN Symposium on
Principles of Programming Languages, Boston, Mass.

Sager, N. [1973] "The String Parser
Literature”, in [Rustin 73].

for Scientific

246

Winograd, T. [1971] Procedures as a Representation for
Data in a Computer Program for Understanding Natural
Language, Project MAC-TR 84, MIT, Cambridge, Mass.

Woods, W. A. [1970] "Transition Network Grammars for
Natural Language Analysis", Communications of the ACM
13:591.

