
ORGANIZATION AND INFERENCE
IN A FRAME-LIKE SYSTEM OF
COMMON SENSE KNOWLEDGE

Eugene Charniak
Institute for Semantic and Cognitive Studies

Castagnola, Switzerland

I. INTRODUCTION

Rather than write two short papers for
the two sessions I participate in (Memory:
Organization, and Memory: Reasoning and
Inferencing) I have chosen to write one
paper of twice the length. My reason for
doing so, beyond the fact that it takes less
time to write one long paper than two short
ones, is that the issues involved are so
intertwined as to make separating them an
unprofitable task.

My goals have not changed since
(Charniak 72). I am still interested in the
construction of a computer program which
will answer questions about simple narration
(e.g. children's stories). More exactly,
if one makes the somewhat unrealistic
division of the problem into (a) going from
natural language to a convenient internal
representation, and (b) being able to
"reason" about the information in the story
in order to answer questions, my interests
are clearly in the latter section. I will
take it as given that such reasoning
requires large amounts of "common sense
knowledge" about the topics mentioned in the
text, so I will not demonstrate this point.
(However it should come out incidentally
from the examples used to demonstrate other
points.) To reason with this knowledge
requires that it be organized, by which I
simply mean it must be structured so that
the system can get at necessary knowledge
when it is needed, but that unnecessary
knowledge will not clog the system with the
all too familiar "combinatorial explosion".
I will start with my current thoughts on
organization.

The scheme presented here has been
clearly inspired by Minsky's "frames paper"
(Minsky 74) so I have called the primary
organizational grouping a "frame". It is
perhaps indicative of the convergence of
ideas reflected in (or perhaps inspired by)
Minsky's paper that the overall organization
proposed here (although not the details) is
quite similar to the independently developed
"scripts" of (Schank and Abelson 75).

II. FRAMES, FRAME STATEMENTS, AND FRAME
IMAGES

I take a frame to be a static data
structure about one stereotyped topic, such
as shopping at the supermarket, taking a
bath, or piggy banks. Each frame is
primarily made up of many statements about
the frame topic, called "frame statements"
(henceforth abbreviated to FS). These
statements are expressed in a suitable
semantic representation, although I will
simply express them in ordinary English in
this paper.

The primary mechanism of understanding
line of a stork is to see it as

instantiating one or more FS's. So, for
example, a particular FS in the shopping at
the supermarket frame would be:

(I) SHOPPER obtain use of BASKET

(SHOPPER, BASKET, and in general any part of
an FS written in all capitals is a variable.
These variables must be restricted so that
SHOPPER is probably human, and certainly
animate, while BASKET should only be bound
to baskets, as opposed to, say, pockets.)
This FS would be instantiated by the second
line of story (2).

(2) Jack was going to get some things at
the supermarket.
The basket he took was the last one
left.

Here we assume that part. of the second line
will be represented by the story statement
(SS):

(3) Jackl obtain use of basketl

(Of course, really both (I) and (3) would be
represented in some more abstract internal
representation.) Naturally, (3) would be an
instantiation of (I), and this fact would be
recorded with a special pointer from (3) to
(I). I am, of course, making the common
distinction between a data base which
contains the particular story information,
like (3), and a "knowledge base" which
contains our generalized real world
knowledge, such as the supermarket frame.

The supermarket frame will contain
other FS's which refer to (I), such as:

(4) (I) usually occurs before (5)

(5) SHOPPER obtains PURCHASE-ITEMS

Any modification (like (4)) of a particular
FS (like (I)) will be assumed true of all
SS's which instantiate that FS (like (3)),
unless there is evidence to the contrary.
Hence, using (4) we could conclude that Jack
has not yet finished his shopping in (2).
Other modifications of (I) would tell us
that Jack was probably already in the
supermarket when he obtained the basket, and
that he got the basket to use during
shopping.

The variable SHOPPER in (I) also
appears in (5), and in general a single
variable will appear in many FS's. Hence
the scope of these variables must be at
least that of the frame in which they
appear. When an SS instantiates an FS the
variables in the FS will be bound.
Naturally it is necessary to keep track of
such bindings. For example, failure to do
so would cause the system to fail to detect
the oddness in (6) and (7).

(6) Jack went to the supermarket. He got a
cart and started up and down the aisles.
Bill took the goods to the checkout
counter and left.

42

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(7) Jack went to the supermarket to get a
bag of potatoes. After paying for the
milk he left.

It is probably a bad idea to actually change
the frame to keep track of such bindings.
Instead I assume that the frame remains
pure, and that the variable bindings are
recorded in a separate data structure called
a "frame image" (abbreviated FI). For
frames which describe some action, like our
shopping at supermarket frame, we will
create a separate FI for each instance~ of
someone performing the action. So two
different people shopping at the same time,
or the same person shopping on two different
occasions, would require two FI's to record
those particulars which distinguish one
instance of supermarket shopping from all
others.

Much of this information will be stored
in the variable bindings (shopper, purchase
items, store, shopping cart used, etc.)
However the variable bindings do not exhaust
the information we wish to store in the FI,
for example it will probably prove necessary
to have pointers from the FI to some, if not
all, of the SS's which instantiate FS's of
the frame in question. Of slightly more
interest is that the FI of a frame
describing an action will keep track of how
far the activity has progressed. So, for
example, we would find the following story
odd:

(8) Jack drove to the supermarket. He got
what he needed, and took it to his car.
He then got a shopping cart.

We have already said that FS's are modified
by time ordering statements, so to note the
oddity of (8) it is only necessary to have
one or more progress nointers in the FI to
the most time-wise advanced FS yet mentioned
in the story. Then when new statements are
found in the story which instantiate FS's in
the frame the program will automatically
check to see if these FS's are consistent
with the current progress pointer(s). If so
the FI progress pointer(s) may be advanced
to indicate the new state of progress. If
not, as in (8), the oddity should be noted,
and, if possible, the story teller
questioned about the oddness of the time
sequence.

I have not commented so far about how,
given a new SS, we locate an FS which it
instantiates. In general this is a
difficult problem, and I will have little to
say about it. Roughly speaking the problem
falls into two parts. First, the system
must recognize that a given frame is
relevant to a particular story. I am
assuming that the presence of a key concept
in the story will trigger a given frame.
(It should be clear however that this is
much too simple minded. For example, the
scene setting description of a city block as
containing a supermarket, bank, tailors,
shoe repair shop, etc., should probably not
activate the frames for the activities
normally done in each.) Secondly, given that
one or more frames have been selected as
relevant to the story, how does the program

43

find the particular FS which is instantiated
by a particular SS? Here I will assume that
a list of current frames is kept and frames
which have not been used recently are thrown
away. To find the particular FS which is
instantiated by the SS I will simply assume
that all FS's of the recently used frames
are checked for a match. A more
sophisticated procedure would be to first
check FS's which follow the progress
pointer. Another improvement would be to
have an index for each frame so that it
would not be necessary to check all FS's of
the frame. This would, in effect, make each
frame into a local data base. If a frame
has a sub-frame it too will be checked,
although it will probably be necessary to
put some limit on how deep one should look
into sub-frames.

One final note before moving on to more
detailed issues. This paper is concerned
primarily with the use of frames in the
comprehension of simple narration. However,
it seems only reasonable to me to assume
that whatever knowledge we have built up
into frames was done in large part in order
to get arDund in the world, rather than to
read stories. I will assume then that the
same knowledge structures should be usable
for either task, and upon occasion I will
make arguments that structuring a frame in a
particular way will make it easier to
perform actions based on the frame
structured knowledge. It seems to me one of
the great advantages of frames that they
seem capable of being used in multiple ways,
something which is not obviously true, for
example, of "demons" (Charniak 72).

III. FRAMES AND SUB-FRAMES

In this and the next two sections we
will take a closer look at the internal
structure of a frame. In particular I will
try to show that Minsky's notion that
different frames will have "terminals', in
Common is applicable to the kind of frames I
have in mind. Minsky's idea was that frames
applied to problems of vision, would store
information about what one was likely to see
in a certain situation (e.g. a room) and
from a certain vantage point (e.g. just
having walked in the door). Upon changing
vantage points one moved to different
frames, but many of the "terminals" of the
frame (e.g. right wall, center wall, lamp,
etc.) would appear in both views, and hence
in both frames. While Minsky used the term
"terminal" when discussing scenario frames
(his "terminals" very roughly correspond to
my "frame statement") he never applied the
idea of common terminals between frames to
scenario frames. Nor is it clear that
frames such as the ones discussed in this
paper have anything directly corresponding
to the sharing of a wall terminal between
two room frames. However, I will try to
show that Minsky's notion does come in
useful in a somewhat different way.

Let us start by giving a naive outline
of some FS's about supermarkets.

(9) a) Goal (SHOPPER own ITEMS)
b) SHOPPER be at SUPERMARKET
c) SHOPPER have use of BASKET
d) do for all ITEM ITEMS
e) SHOPPER at ITEM
f) BASKET at ITEM
g) ITEM in BASKET
h) end
i) SHOPPER at CHECKOUT COUNTER
j) BASKET at CHECKOUT COUNTER
k) SHOPPER pay for ITEMS
i) SHOPPER leave SUPERMARKET

I am assuming in (9) an implicit time
ordering from top to bottom. In the actual
frame this time ordering would be made
explicitly. The reader might also notice
that most of the FS's are states which must
be achieved at some point in the course of
the action. For reasons why I use states
rather than actions to express what happens
in an action sequence, see (Charniak 75a).

There are countless things missing or
wrong with (9), but I wish to concentrate on
only one of them, the relation between
shopping and using a shopping cart. ~t
should be obvious that one can do shopping
without using a cart, although (9) would
make it seem that cart usage is an
indispensable part of shopping. I will
suggest that a good way to gain this
flexibility in the supermarket frame is to
have a separate cart frame which shares
information with the supermarket frame, by
having, in effect, some FS's common between
the two.

One way to account for the ability to
shop with or without a cart (and to
understand stories about same) would be to
have a second frame for shopping without a
cart. However, not only is the idea
unsatisfying, since it would require the
duplication of the many facts the two
activities have in common, but it would also
lead to problems in the comprehension of
certain types of stories. For example, one
could easily imagine a story which starts
out with Jack using a cart, the wheel of the
cart sticking, and rather than going to get
a second cart Jack finishes his shopping
without a cart. It seems a priori that such
combinations would be extraordinarily hard
to account for with two completely separate
frames for the two forms of supermarket
shopping. (Alternatively, it is common
practice in crowded situations to park one's
cart in a general vicinity of several items
and pick up the individual items without the
cart, only to bring them all to the cart at
a later point and resume shopping with the
cart.)

One possibility for a single frame
which handles both kinds of supermarket
shopping is:

(10) a) Goal: SHOPPER owns PURCHASE-ITEMS
b) SHOPPER decide if to use a basket.

If so, set CART to T
c) If CART then SHOPPER obtain BASKET
d) SHOPPER obtain PURCHASE-ITEMS

method

44

e) Do for all ITEM PURCHASE-ITEMS
f) SHOPPER decide on next ITEM
g) SHOPPER at ITEM
h) If CART then BASKET also at ITEM
i) SHOPPER hold ITEM
j) If CART then ITEM in BASKET
k) End
i) SHOPPER at CHECK-OUT COUNTER
m) If CART then BASKET at CHECK-OUT

COUNTER
n) SHOPPER pay for PURCHASE-ITEMS
o) SHOPPER leave SUPERMARKET

I
I
I
I

Now one problem with (10) is that to my
eye the constant repetitions of "If CART i
then ..." give it a rather ad hoc l appearance. And while it was this ugliness
which gave me the initial impetus to find a
better representation, there are more
concrete problems with (10). One major one •
is the lack of any information about why l these various actions are to be performed
and why in this particular order. This lack
comes out most strongly when we consider i
stories where something goes slightly wrong l in the course of the shopping. For example:

(11) Jack was shopping at the supermarket.
After getting a few things he returned •
to his cart only to find that some l prankster had taken everything out of
it and put the things on the floor.
After putting the things in the cart ms
Jack finished his shopping, but was not I able to find out who haddone it.

Question: Why did Jack put the
groceries which were on the floor into •
hi~ cart? l

The question here is so simple that one
might be at a loss to know what sort of im
answer is desired, but one certainly knows l that the items were put back in the cart so
Jack could continue his shopping. The point
here is that frame (10) does not give any
explanation for Jack's action in (11). •
Naturally we would not expect any l supermarket frame to explicitly take into
account strange situations like (11), but
this is not necessary to be able to answer
the qustion in (11). All that is needed is l an understanding that the purpose of a cart
is to transport goods from place to place in
the supermarket and that to do this the
goods must be in the cart. Hence, in this •
situation, if, as is most likely, Jack still l wants to transport the goods elsewhere he
should once again put the items in the cart.
But (10) does not give this information. It i
tells us to putthe items in the cart, but l not why or for how long.

I should point out that if (11) seems
like an extraordinarily odd story on which •
to base any conclusions, there are much more l normal ones which make the same point. For
example:

(12) Jack was shopping at the supermarket.
After getting a few items the wheel of
his cart stuck. He got a second cart
and finished his shopping.

I

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Question: Why did Jack transfer his
groceries to a second cart?

The story does not say that Jack transferred
his groceries, and to infer that he did
require essentially the same reasoning
process required to understand why Jack put
the groceries back in the cart in (11).

To handle stories like (11) and (12) we
must therefore put two pieces of information
into (10) which are not there at present.
First, that in those cases like lines (-1Oh)
and (10m) where we have the basket going
along with the person, the reason is to keep
the previously collected items with one.
Second, that to carry something with a cart
requires that it be in the cart. We will
indicate the first of these by:

(13) SHOPPER at ITEM
side condition - DONE at ITEM also

~ method - suggested
cart-carry

(SHOPPER,BASKET,DONE,ITEM)

Here DONE is a list of those items
already collected. Cart-carry is a frame
(and hence a sub-frame of the supermarket
frame) describing the use of a cart for
carrying things. (I am introducing a bit of
terminology (method-suggested) from
(Charniak 75a); I will assume that it is
reasonably self-explanatory. Consult
(Charniak 75a) for some explanation and
justification.) The FS's in (13) replace
lines (10g) and (10h) and differ from them
in two respects. First (13) formulates the
goal in a manner neutral with respect to
using a basket or not, with only a
suggestion that a basket be used. This is
obviously necessary if we are to handle
stories where the person does not use a
basket. Secondly, it assumes the existence
of a separate cart-carry frame in which we
store information about using carts to carry
things. We will see other advantages of
this move later, but at the moment we can at
least note that if one were to ask "Why does
Jack use a basket?" two answers (at least)
would be possible - "to do shopping", or "to
carry his groceries". (13) allows for both
of these answers, whereas (10g) and (1Oh)
only allow for the former, since there is no
separate "carry" level.

The second piece of information we
needed to handle stories (11) and (12) was
that to carry something with a basket it is
necessary that the thing be in the basket.
The most natural place to put such
information would be in our newly created
cart-carry frame where it would be some sort
of a pre-requisite (or more precisely a
"strict" (as opposed, for example, to
"suggested") substate to use the terminology
of (Charniak 75a)). By creating the
cart-carry frame and locating information
about the action within it we also
circumvent the need to duplicate this
information elsewhere. For example, an
expanded supermarket frame would include the
fact that in some circumstances it is
permitted (and suggested) that one uses
one s basket to take the groceries to one's

45

car. By stating this as suggesting
cart-carry (SHOPPER, BASKET, PURCHASE-ITEMS,
CAR) we no longer need an instruction to put
the groceries into the basket again before
setting out.

IV. SHARING FRAME STATEMENTS BETWEEN FRAMES

So far then I have argued that frames
must be able to reference sub-frames, and in
particular, the supermarket frame needs some
sub-frame like cart-carry. There is nothing
exceedingly strange in this, but the next
step will perhaps be a bit more interesting.
Here I will suggest that some of the frame
statements in our supermarket frame be
shared with the cart-carry frame. To see
the reasons for this, let us start by noting
that the failure to allow for common FS's
will lead to some curious redundancies in
our frame. One of these occurs in the DO
loop of (10) which handles the collection of
the PURCHASE-ITEMS. With our latest
changes, this portion of (10) (lines (e)
through (k)) looks like:

(14) a) Do for all ITEM PURCHASE-ITEMS
b) SHOPPER choose next ITEM

PURCHASE-ITEMS - DONE
c) SHOPPER at ITEM
d) side-condition DONE at ITEM also
e) |method - suggested
f) k-~cart-carry

(SHOPPER,BASKET,DONE,ITEM)
g) SHOPPER hold ITEM
h) If CART then ITEM in BASKET
i) DONE <- DONE + ITEM
j) End

The redundancy is this: we have already
stated that cart-carry has a strict
sub-state that the things to be carried must
be in the basket. But in (14) we further
specify in line (h) that ITEM is to be in
BASKET, which is simply a special case.

Once again my initial reason for being
concerned with this is that I find such
redundancy unappealing, but again there seem
to be more solid reasons for doing away with
it. In particular consider the following
story:

(15) Jack was doing some shopping at the
supermarket using a shopping cart. The
last thing he got was a package of gum,
which he picked up right at the
check-out counter. Jack put the gum
and everything else down on the
counter.

Question: Why didn't Jack put the gum
in his basket?

Again the question seems silly, but again we
all know that there would be no reason to
put the gum into the cart simply because
Jack already has everything at the check-out
counter. But (14) as stated does not allow
us to make this inference. It simply says
to put each ITEM into the BASKET and since
no reasons are given there is no way to see
that in the particular case of the gum in
(15) there is no reason to put the gum into
the basket.

My solution to this problem is to see
line (14h) as shared between the supermarket
frame and the cart-carry frame. Looked at
in this light, the reason for obeying (14h)
is then the same as the reason for having
items in the basket as stated in the
cart-carry frame - if you wish to use the
cart to carry an item it must be in the
cart. Since Jack has no reason for carrying
the gum in the cart he has no reason to put
it in the cart. (To be a bit more precise,
Jack might have a reason to put the gum in
the cart, namely using the cart to carry .the
groceries to his car afterwards, but this
only occurs after putting the groceries on
the check-out counter, hence does not count
as a reason for doing it at the particular
point in time we are discussing.)

Now when I suggest that the two frames
share an FS, I do not mean that the one FS
physically appears in both frames, although
this would be perfectly possible in a list
processing language like LISP. There are,
however, several good reasons for not
implementing FS sharing by physical
identity. For one thing it would mean that
different frames would have to have the same
variables, which at the very least would
create a major debugging problem. From a
theoretical point of view it seems likely
that such an attempt will run into trouble
because two or more statements in one frame
will share the same FS in a second frame.
If the two FS's in frame one have different
variables there would be no way for the FS
in frame two to be identical to both, and
hence could not be physically the same.
(However I do not have a clear-cut example
of this happening.)

So I will not assume that FS (14h) is
physically identical to the corresponding FS
in cart-carry, but rather that there is a
pointer from (14h) to the FS in cart-carry
which says that (14h) should be considered
to be the same FS. That is, we would have
an arrangement somewhat like:

(16) Frame for Frame for
supermarket carry-cart

. .CARRIED_~ in CARRIER
o

ITEM in BASKET
identity
pointer

Here I have created two new variables for
the cart-carry frame, CARRIED which
specifies what is carried, and CARRIER which
is the cart used to carry. Naturally, to
actually use the cart-carry information for
understanding the ITEM in BASKET line of the
supermarket frame it will be necessary to
see that ITEM corresponds to CARRIED, etc.
(It may also be necessary to see that
SHOPPER in supermarket corresponds to the
variable for the actor in cart-carry, and
this would require more formalism, but I am
not sure it is necessary.) Finally, note
that there seems to be no reason to have a
corresponding pointer from the FS in
cart-carry to ITEM in BASKET, since there is
no need to know about supermarkets in order

to use a basket.

Now if all of this seems eminently
reasonable to you, feel free to skip the
next section. But for those of you to whom
this seems a strange sort of data structure,
what follows is an attempt to justify it by
considering one alternative and showing how
the shared FS proposal is superior.

Beyond the "ugliness" of the
redundancy, the only argument we gave for
replacing (14h) with (16) was the story (15)
where Jack did not put the gum into the
shopping cart. One way to solve both the
redundancy, and the problem spotlighted by
(15), would be to simply remove (14h) from
the supermarket frame. This clearly solves
the redundancy problem, and it also solves
(15) since now the only FS to the effect
that the goods should be in the basket
appears in cart-carry, and since Jack has no
reason for carrying the gum in the cart he
has no reason to put the gum into the cart.

The argument against this possibility
must start from the recognition that it has
some counter intuitive properties.
Intuitively one sees putting ITEM into
BASKET as the last state of collecting ITEM.
With this new solution this is no longer the
case. Instead, putting ITEM into BASKET is
a result of wanting to move to the next
ITEM. (To distinguish we will call the item
one has just obtained ITEM and the item one
is going to obtain next ITEM .) Hence,
putting ITEM into the basket is not the
last thing of the N'th cycle, but one of the
first of the N+1"st. This is againt my
intuition and makes me immediately suspect
it.

Furthermore, this counter intuitiveness
seems to have more substantive implications.
For example:

(17) Jack was shopping at the supermarket.
After getting a basket he went to the
milk counter and picked up a carton of
milk. He then thought about what to
get next.

Question: Did Jack put the milk in the
basket?

Answer: I would assume so.

The shared FS model would allow for this
answer since deciding on ITEM occurs
after putting ITEM into the basket. But by
deleting (14h) we remove this information so
there would be no way to answer the question
other than "I don't know". (Of course, "I
don't know" is also an acceptable answer,
but our model must allow for the various
alternative answers people can give.)

A second argument against deleting
(14h) comes from using our supermarket frame
in actually doing shopping. By deleting
(14h) we would be saying in effect that one
puts ITEM into the basket when checking to
see that all of DONE is in the basket when
going to get ITEM . Computationally it
seems horribly inefficient to bother to
check on all of DONE each time (and in fact

46

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I am sure that people do not do it).

Finally by deleting (14h) we make it
difficult to account for "mistakes" that
people make. For example, suppose we had
the variation of (15) where Jack does put
the gum into his cart only to immediately
take it out again. We then ask the
question:

(18) Question: Why did Jack put the gum into
the cart, since he only had to
immediately take it out again?

Answer: Well, I suppose one normally
puts things into the cart immediately
after picking them up.

Such considerations lead me to reject the
alternative of deleting (14h).

V. A BETTER LOOKING SUPERMARKET FRAME

So far I have argued for the shared FS
model primarily on the basis of its ability
to handle stories where mistakes occurred,
but it is also the case that it allows us to
solve one of the "aesthetic" problems
mentioned earlier, namely the constant
repetition of "If CART then..." in (10).
What we find is that all occurrences of this
phrase in (10) can be replaced by either an
explicit call to cart-carry (as in (13)) or
an identity pointer to an FS in cart-carry,
as in (16). To give another example of
this, consider line (I0c), repeated here:

(I0)c) If CART then SHOPPER have use
of BASKET

This is clearly another example of a
pre-requisite of cart-carry, and hence
should be considered shared with cart-carry
in the same way that ITEM is BASKET is
shared. Furthermore, we can now remove the
"If CART then" portion of (I0c) by assuming
the eminently reasonable convention that a
shared node in frame-1 which has a pointer
to frame-2 is only applicable to the action
in rame-1 if frame-2 is activated in the
sense that we have created a frame image for
frame-2. When performing the action in real
life this means that upon deciding to use a
cart one sets up a cart-carry image and this
in turn makes the vaious FS's in the
supermarket frame dealing with carts
relevant to one's activities. While reading
a story the general rule will be that any SS
instantiating an FS which is shared with
cart-carry will be sufficient to create an
FI for cart-carry. With this convention
(I0c) becomes:

(19) SHOPPER have use of BASKET *

identity
pointer to cart-carry

Furthermore, since I have argued that these
pointers are needed on independent grounds,
we have received this simplification for
free.

47

With both this simplification, and the
use of cart-carry, our supermarket frame now
looks like:

(2o) a Goal: SHOPPER owns PURCHASE-ITEMS
b SHOPPER decide if to use basket,

if so set up cart-carry FI
c SHOPPER obtain BASKET *cart-carry
d SHOPPER obtain PURCHASE-ITEMS
e |method - suggested
f) ~Do for all ITEM PURCHASE-ITEMS
g) SHOPPER choose ITEM

PURCHASE-ITEMS - DONE
h SHOPPER at ITEM
i J side-condition DONE at ITEM

also
j | method - suggested
k ~ cart-carry (SHOPPER,

BASKET, DONE, ITEM)
1 SHOPPER hold ITEM
m ITEM in BASKET *cart-carry
n DONE <- DONE + ITEM
o End
p SHOPPER at CHECK-OUT-COUNTER
q) side-condition PURCHASE-ITEMS

J at CHECK-OUT-COUNTER also
r) '[method - suggested
s) ~cart-carry (SHOPPER, BASKET,

PURCHASE-ITEMS,
CHECK-OUT-COUNTER)

t) SHOPPER pay for PURCHASE-ITEMS
u) SHOPPER leave SUPERMARKET

I have here adopted the convention of
indicating an identity pointer to another
frame by a "*" followed by the name of the
second frame.

In spite of the "simplificatons"
introduced, (20) is considerably longer than
(10). But on the other hand, (20) shows
much more of the structure of shopping at
supermarkets than does (10). So to point
out only one way where (20) is superior, it,
but not (10), states that it is necessary to
get one's groceries to the checkout counter,
whether or not one uses a cart. Of course,
(20) still does not contain more than a
fraction of our knowledge of supermarkets,
and in fact many of its particulars are
clearly wrong, but it's a start.

VI. INFERENCE ON FRAME BASED KNOWLEDGE

So far I have been discussing the
organization of knowledge and have suggested
that a large portion of it is stored in
frames which connect up to other frames by
either sub-frame relations or identity
pointers. But a quick look back will reveal
that at the same time several issues of
inference have crept in. For example near
the very beginning we stated that if an SS
instantiates an FS then any modification of
the FS within the frame is true of the SS
also unless there is explicit information to
the contrary. This, you will remember,
allowed the system to conclude that when
Jack got the shopping cart he was most
likely already at the supermarket, but had
yet to begin the actual act of collecting
the groceries. Or again, when I mentioned
that an FI had one or more progress
pointers, I implicitly assumed that one
could infer what actions had already taken

place using the time sequence information in
the frame plus the progress pointer in the
FI.

This is, of course, as it should be.
One cannot, or at least should not, discuss
structure independently of use and the use
of frames is to allow us to make inferences
about the stories we read. Nevertheless,
there remain many issues of inference left
untouched by the previous discussion and I
will cover one or two of them here.

In (Charniak 72) I argued that some
inferencing had to be done as the story was
read (i.e. at "read time") rather than
after a question was asked ("question
time"). I think it is fair to say that this
is now generally accepted, and the question
now is how much inference is done at read
time, and of what sort. I will not argue
the point here (for a more up-to-date
presentation of the issue see (Charniak
75b)), but rather make the rather strong
assumption that one has not "understood" the
text unless one has made a certain, as yet
undefined, class of inferences which enable
one to tie the text together into a coherent
whole.

Given this assumption we are
immediately confronted with a pressing
problem. In principle one can draw an
infinite number of inferences from a given
body of text, and even in practice the total
number would be prohibitively large. Some
way then is needed to distinguish those
inferences which need be made from those
which do not. It is my impression that the
system outlined previously in this paper has
several nice properties in this regard.

For one thing, many inferences which
would have to be made in a "demon" system
(Charniak 72) need not be made in the system
we have just outlined. To again take the
example of Jack getting a shopping cart, I
pointed out that the supermarket frame
allowed the system to make several
inferences about the statement, like why he
did it, and that he had yet to start the
shopping, but I left it vague as to whether
these inferences should actually be made at
read time, or only if a qustion was asked.
In fact, there seems to be little reason for
actually making most of these inferences at
read time. Since the SS will have a pointer
to the FS it instantiates, we may assume
that a standard tactic for answering
questions about a particular SS, like why
the action was performed, or where, or when,
would be to look in the frame for the
answer.* To put this slightly differently,
when an SS instantiates as FS it is not
necessary to put into the data base
instantiations of all the modifications of

*I might point out in passing that the use
of the modifying information in such a
manner is a major reason why frames as I
describe them look like "data" rather than
"program". Traditionally programs have the
property that they are not meaningful
"locally" whereas we want to be able to use
a modifying FS to answer a question about an
SS without going through the entire frame.
Hence my description of frames at the
begining of section II as "a static data
structure."

the FS.

Looked at in this light, it is
interesting to ask under what circumstances
one would want to instantiate an FS and put
it in the data base. This is, after all, a
large class of potential inferences and some
restrictions on them would be at least a
start on the problem of which inferences
need be made at read time. The best answer
I currently have to this question is summed
up in the following ru].e.

(21) The Dual Usage Ru].e: If X is an FS in
an active frame (one which has an FI)
then X will only appear instantiated in
the data base if it has two purposes.

Some typical purposes are:

a) appearing in an active frame
b) appearing in the semantic
representation of the text
c) updating older statements in the
data base

(this list will surely be expanded)

So the typical example of an FS which
appears instantiated in the data base is one
which appeared in the semantic
representation of the text and was found to
instantiate some FS. A more intersting case
is exhibited by:

(22) Jack was going to Bill's birthday
party. He thought Bill would like a
kite. Jack then went to the store.

In (22) we should expect Jack to be buying a
kite at the store. But consider the
statement

(23) Jack1 own kitel

On one hand we can only predict that this is
likely to occur using information from the
birthday frame (perhaps in conjunction with
the given subframe). On the other hand,
this statement serves as the goal statement
in the store frame. To enable (23) to act
as the link between frames in this fashion
it must appear explicitly in the data base
with frame pointers to two diferent frame
statements in two different frames. That is
to say, (23) appears in two active frames,
and hence is a justified instantiation.

It seems to me that (21) is a fairly
strong rule, and it will be intersting to
see if it can be maintained. Of course,
given that the list of uses can be expanded,
it is not completely clear what would serve
as a counter exmple to the rule, but it
seems to me that the general intent should
be clear. For example, (21) would prohibit
many of the inferences made by Rieger's
system (Rieger 74). To give only one
example, given statement (24) Rieger's
system would infer statements like (25)-(28)
none of which would qualify by the standard
set up by (21).

(24) Jack told Mary that Bill wants a book
(25) John believes that Bill wants a book
(26) Mary now knows that Bill wants a book

48

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(assuming that the ~ representation of
"tell" is not something ike "cause to
know by word of mouth")

(27) Bill might get himself a book
(28) John may want Mary to give Bill a book

(This is one of Rieger's own examples.)

VII. COMPARISON WITH THE DEMON APPROACH

To get some perspective in frames as
presented here let me compare them to the
demon based system of my Ph.D. thesis
(Charniak 72). On one hand this will enable
me to explain why I have given up on the
latter, while at the same time pointing out
what I see as the advantages of the former.
For those of you not familiar with (Charniak
72) a paragraph of summary is in order.

The point of the demon model was that
many lines which had little significance in
themselves took on greater significance in
context, a prime example being "There was no
sound" in the context of a child shaking his
piggy-bank. To account for such situations
th model associated with each "topic
concept" (e.g. piggy-bank, or supermarket)
a "base routine" which was a program which
set up "demons" which would lie in wait for
lines like "There was no sound" (which would
be the "pattern" of the demon). Should the
line occur, the demon would in effect say,
"I know what this line means", and proceed
to put statements in the data base which
explicated the significance of the line
(e.g. a statement like "This line implies
there is nothing in the piggy bank"). We
can draw the parallel between base routines
and frames on one hand, and demons and frame
statements on the other. I will come back
to the significance of this parallel later,
for the moment Just take it as a helpful
analogy.

One problem with the demon model is
that in some cases one is forced into ad hoc
formulations of facts due to the theoretical
machinery seemingly not being suited to the
problem.

Consider a fact like:

(29) Umbrellas are used to keep rain
off one's head.

To fit such a fact into the model just
presented, we would most naturally treat it
as follows:

(30) Base routine which activates demon:
Possibility of rain.

Pattern: Person gets umbrella.

Program: If person might be caught in
rain he got the umbrella to prevent
getting wet.

This will work quite well for stories like:

(31) It looked like rain. Jack got his
umbrella.

49

It would even be possible, using extra
mechanisms in the model, to handle a story
like:

(32) As Jack was leaving the house he heard
on the radio that it might rain. He
went to the closet.

If asked why he did this we would respond
that he was probably getting an umbrella.
(It would be also possible to answer that he
was getting his raincoat, but this is not
important since "raincoat" would also have
information connecting it to rain.) The
extra mechanism which is needed here is the
ability to put together the "expectation" of
getting an umbrella, with our knowledge of
where umbrellas are normally kept to
conclude that he is going to get his
umbrella in spite of the fact that the word
"umbrella" was never mentioned in (32).

The trouble with this solution is that
it would not account for the following
story:

(33) Jack began to worry when he realized
that everyone on the street was
carrying an umbrella.

Question: What was Jack worrying about?

Answer: That it might rain, and he was
without an umbrella.

While it is intuitively clear that a fact
like (29) comes into play here, the
formulation in (30) as vague as it is, is
incapable of accounting for (33). The
problem is that since (33) never mentioned
rain, the demon expressed in (30) would
never have been activated. To put this in
terms of pointers, the fact in (30) only
allows a pointer from "rain" to "umbrella",
it does not allow a pointer from "umbrella"
to "rain" and hence cannot be used to help
us conclude in (33) that the problem is
rain. It would be possible to put in a
second demon which would handle (33), but
this is the sort of ad hoc solution one
wants to avoid.

Within the frames model proposed in
this paper it is not hard to think up
several solutions to this problem. My
particular favourite looks like:

(34)

Umbrella ~ a - u s i n g ~

~ ain use: *-" Obtain *

ize: --- Raise canopys(Kee p rain
foff person /

Shape: --- • ~ Method: * ~

[J Raincoat

Purpose: *

Here Umbrella and Umbrella-using would be
frames, while (Keep rain off person) might
be a frame, although more likely it is an FS
in the Rain frame or some such. The point

here is that what appears to be a problem in
the demon model is quite straight forward in
the frame model.

Let us now return to the analogy made
earlier between frame statements and demons.
This analogy works so well because frame
statements accomplish precisely what demons
were designed to accomplish -- assign
significance to a line due to the context it
is in. So we notice how lines like
(35)-(38) in the context of supermarket will
instantiate FS's in the supermarket frame
and hence (35)-(38) will be given more
significance than they have out of context.

(35) Jack got a cart
(36) Jack picked up a carton of milk
(37) Jack walked further down the aisle
(38) Jack walked to the front of the store.

He put the groceries on the counter.

What is interesting in this comparison
is that one demon usually has a minimum of
three or four statements, whereas obviously
a single FS is only one statement. FS's
seem then to have a considerable conciseness
to them, at least when compared to demons.
The reason for this is not hard to see.
Demons being idependent facts must bind
their own variables, and much of the size of
a demon is due to checks to make sure that
the variable bindings are correct (e.g.
BASKET must be a basket, and not a carton of
milk). These same things must be checked in
a frame, but since the scope of the variable
is the entire frame, rather than a single
FS, the overhead, so to speak, is shared.
Furthermore, the inferences about a given FS
are stored implicitly in the structure of
the frame, whereas they had to be stated
explicitly in the demon. So a second
advantage of the frames approach over demons
is the conceptual economy one obtains in the
expression of facts.

The analogy between FS's and demons
also points to a third way in which the
frames approach seems superior. One problem
which bothers many people (including myself)
about the demon approach is that it
seemingly calls for large numbers of demons
to be activated every time a given topic is
mentioned in the story, although it is
unlikely that more than a small fraction of
the demons will ever be used. There are two
possible reasons why people feel this is a
problem. One is that so many active demons
might make it hard to locate those demons
which really should apply. Frames do not
help with this problem since there will be
equal numbers of FS's.

To see the second reason why activating
large numbers of demons is problematic, note
that if it took no time at all to set up a
demon, setting up many of them would seem
less bad. But of course it does take time
to set up a demon, and it becomes a problem
to Justify this computation in light of the
unlikeliness of the demon ever being used.
Frames do offer a potential solution to this
second problem because with frames, rather
than supermarket activating many demons, we
need only create a frame image for one frame
(i.e. supermarket). This would take much

less time, and hence would be better, but it
should be noted that we pay a price. In
particular most of the work involved in
setting up a demon is to index our storage
of active demons so that retrieving the ones
needed will be reasonably easy. By
comparison looking through frames to find
matching FS's promises to be a time
consuming task unless we do something
similar. This is what I meant earlier when
I said that perhaps each frame would have
its own index to its contents. On the other
hand, the approach presented here allows one
to trade more time for locating an FS in
return for less time to set up a new topic
(frame), and the spectre of all those never
to be used demons makes me inclined to
accept this trade.

Finally, the frames presented here have
no problem handing time relations between
FS's as we saw earlier in the paper. The
same cannot be said of demons. We saw
earlier how we might use a progress pointer
to allow the program to notice actions which
were out of sequence. What could be the
equivalent in the demon model of the
progress pointer? For one thing, where would
such a pointer be stored? Short of giving
every demon a pointer to the progress
pointer, an inelegant solution at best, it
is not clear what one could do.
Furthermore, where would the time ordering
information be stored? Notice that time
ordering information is much more complex
than a simple string, or even lattice which
indicates the time orderings of actions.
For example some time orderings are "strict"
in the sense that one cannot possibly do
things any other way, while others are
"suggested" in the sense that it is a good
idea to do the actions in a given order, but
possible to do them some other way, while
yet others are "regulatory" in the sense
that it is possible, but illegal to do the
actions in the opposite order (Charniak
75a). In the frames model one can store
time ordering statements in the frame along
with the rest. It is by no means obvious
what to do in the demon model. This is not
to say that one could not do it, but rather
that having done it one would be left with
something of little resemblance to the
original demon model, and even less
aesthetic appeal.

REFERENCES

Charniak, E., Toward g model of children's
storv 9_Q~r_~_bJ~n~gu!~. AI-TR266, MIT
Artificial Intelligence Laboratory, 1972.

Charniak, E., A partial taxonogy of
knowledge about actions. Paper submitted
to the Fourth International Joint
Conference on Artificial Intelligence,
1975a.

Charniak, E., l~fere~cg and knowledge.
Course notes for the Tutorial on
Computational Semantics, Institute for
Semantic and Cognitive Studies, 1975b.

Minsky, M., A framework fQr reDre~entlng
knowledge. AI-Memo 306, MIT Artificial

BO

!
!
!

I
I
i
I
!

I
!

I
I
I
I
I
I
I
I
I
I
I

I
I
I
i
I
I
i
I

Intelligence Laboratory, 1974.

Reiger, C.J., ConceDtual Memory.
Unpublished Ph.D. Thesis, Stanford
University, 1974.

Schank R.C. and Abelson, R.P. Scripts,
Dlans a~ knowledge. Paper submitted to
the Fourth International Joint Conference
on Artificial Intelligence, 1975.

51

