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Abstract

This article describes the system submitted by
the RGCL-WLV team to the SemEval 2019
Task 12: Toponym resolution in scientific pa-
pers. The system detects toponyms using
a bootstrapped machine learning (ML) ap-
proach which classifies names identified using
gazetteers extracted from the GeoNames ge-
ographical database. The paper evaluates the
performance of several ML classifiers, as well
as how the gazetteers influence the accuracy of
the system. Several runs were submitted. The
highest precision achieved for one of the sub-
missions was 89%, albeit it at a relatively low
recall of 49%.

1 Introduction

Resolving a toponym, a proper name that refers to
a real existing location, is a non-trivial task closely
related to named entity recognition (NER) (Pisko-
rski and Yangarber, 2013). For this reason, us-
ing an NER system to detect and assign location
tags could seem a good way forward. However,
NER systems may not be able to detect whether a
name refers to a actual location or not (e.g., Lon-
don in London Bus Company). In addition, loca-
tion names are usually ambiguous, which means it
is crucial that these are disambiguated in order to
assign the correct coordinates.

While in the past the focus in toponym res-
olution has been on rule and gazetteer driven
methods (Speriosu and Baldridge, 2013), more
recent approaches also consider ML-based tech-
niques. DeLozier et al. (2015) describe their
ML-based approach, which does not require a
gazetteer. The approach calculates the geograph-
ical profile of each word, which is refined using
Wikipedia statistics, and then fed into an ML clas-
sifier. Speriosu and Baldridge (2013) also make

∗The first two authors contributed equally to the paper.

use of an ML classifier which is text-driven. Geo-
tags of documents are used to automatically gen-
erate a training set. Although the two previous ap-
proaches used two standard corpora for toponym
resolution, consisting of news articles and 19th
century civil war texts, there are wide areas of
application for toponym resolution. For instance,
Ireson and Ciravegna (2010) explore the use in so-
cial media, while Lieberman and Samet (2012) at-
tempt to analyse news streams. Spitz et al. (2016)
have also used an encyclopaedic dataset, compiled
from Wikipedia, WordNet and GeoNames.

The focus of the SemEval 2019 Task 12 was to-
ponym resolution in journal articles from the bio-
medical domain (Weissenbacher et al., 2019). The
articles that had to be processed were case stud-
ies on the epidemiology of viruses, meaning that
the developed systems can potentially be used to
track viruses. The task was composed of three
sub-tasks: (1) toponym detection, followed by (2)
disambiguation and the assignment of the appro-
priate coordinates, as well as (3) the development
of an end-to-end system.

This paper presents our participation in the first
sub-task. Our system performs first a gazetteer
look-up for locations, and then uses machine
learning (ML) to classify whether or not it rep-
resents an actual location. The gazetteers are
extracted from the online geographical database
GeoNames, whilst the classification is carried out
by feeding the context of potential locations in
an ML classifier. The rest of the paper presents
the system developed (Section 2), followed by its
evaluation (Section 3). The paper finishes with
conclusions.

2 System Description

The system developed for this task was designed
as a pipeline consisting of three stages: text clean-
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ing, text processing and identification of locations.
The rest of this section presents each of these
stages. The system has been made available on
online. 1

2.1 Text Cleaning

The first processing stage identifies parts of the
text which do not contain any locations that have
to be identified according to the task guidelines.
These parts include the references section of each
text and the information about authors of the jour-
nal articles. In addition, the texts also contain
genome sequences and abbreviations of chemi-
cals, which resemble abbreviations for locations.
Regular expressions were used to replace these
text sequences with spaces. We chose to replace
the sequences rather than remove them in order to
keep the correct offsets of entities which are cru-
cial in the evaluation process.

Not all the genome sequences were correctly
identified due to the variability of how they are
represented. As a result, not all these sequences
were being replaced by spaces. This introduced
noise in our processing pipeline. In addition, in
some cases the regular expressions for excluding
the references section would fail to correctly iden-
tify the boundaries of this section. Since this left
large amounts of these texts blank, three texts did
not have their respective references sections re-
moved.

2.2 Text Processing

Once cleaned, the texts were processed using com-
ponents from the ANNIE pipeline within GATE
(Cunningham et al., 2002, 2011). The ANNIE
pipeline was designed for named entity recogni-
tion tasks, but for our purpose we used only the
tokeniser and gazetteer lookup components.

We produced three different gazetteers. The
first one contained all locations from the GeoN-
ames geographical database. The second gazetteer
contained a list of cities from GeoNames with a
population of over 5,000. The third gazetteer fea-
tures a list of countries, capitals, and cities with
a population larger than 15,000 people extracted
from GeoNames. The default list of regions in-
cluded with ANNIE was also used. A list of US re-
gions as well as their abbreviated forms was added
manually.

1https://github.com/TharinduDR/SemEval-2019-Task-
12-Toponym-Resolution-in-Scientific-Papers

The output of this module was a list of anno-
tations, including tokens boundaries and tokens
matching the gazetteer entries. This information
is then used by the ML classifier in the next step.

2.3 Identification of Locations
Once the texts are processed, the next task is to
detect whether a candidate location really refers to
a location. In addition to cases of common nouns
which may also be used as a location, there are
also cases where the location names were used as
adjectives. For example, in the sentence Other mu-
tations observed in the HA gene of the Kentucky
isolates have also been reported by others, even
though the gazetteer identifies Kentucky as a loca-
tion it is actually referring to a virus entity. Ac-
cording to the guidelines, this should not be anno-
tated as a location, making the task quite difficult.

Analysis of examples from the training data in-
dicated that the context of candidate locations can
be used to assess whether the detected word is
an actual location or not. For this reason, we
trained a machine learning model which uses the
context of candidates to distinguish between real
locations and falsely identified locations by the
gazetteer look-up component. For the experiments
presented here, we used a window of two words
before and two words after the candidate location
to obtain its context. More precisely, if the de-
tected word from the gazetteer is ωi, the context ci
was defined as,

ci = ωi−2 + ωi−1 + ωi + ωi+1 + ωi+2 (1)

The annotated gold standard provided by the
task organisers was used to create a training set
which contained both positive and negative in-
stances. Two machine learning approaches were
considered for this word window classification
task. The first approach was to use traditional ma-
chine learning models, while the other approach
was to use neural network models.

2.3.1 Traditional ML Approach
There are multiple ways that words can be trans-
lated into a numerical representation before they
can be used as features for a machine learning
model. The commonly used representations con-
vert sequences of words to a bag of words or tf-idf
vectors. However, since their introduction, word
embedding models (Mikolov et al., 2013) have
been widely used as features for text classifica-
tion tasks and have proven successful. In addition,
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they have the capability to represent the context
better than tf-idf vectors. For this reason, we used
the 300 dimensional word2vec embedding model
trained on the Google news corpus.

The word windows had to be represented by a
vector that can be fed as features to a machine
learning model, while retaining a unique length
over all the training and testing examples, in or-
der to be input into a traditional machine learning
model. There are many ways to represent a text
window with word embeddings. Simply averag-
ing the word embeddings of all words excluding
stop words in a text has proven to be a strong base-
line or feature across a multitude of tasks, such
as short text similarity tasks (Kenter et al., 2016).
Following that, the mean of word vectors in a par-
ticular word window was calculated in order to
represent the whole word window with a vector,
which is a 300 dimensional vector in this scenario.
The vector calculated was used as features and
fed into several machine learning classifiers such
as Support Vector Machines (Cortes and Vapnik,
1995), Random Forest classifier (Breiman, 2001)
and XGBoost (Chen and Guestrin, 2015). The pa-
rameters were tuned using 10-fold cross valida-
tion. For the implementation scikit-learn in python
3.6 was used.

2.3.2 Neural Network Architectures
The representation described above performs
poorly on classification tasks such as sentiment
analysis, because it loses the word order in the
same way it happens with the standard bag-of-
words model, and fails to recognise many sophis-
ticated linguistic phenomena (Le and Mikolov,
2014). For this reason, the second approach relies
on neural networks which receive as input the em-
bedding vectors corresponding to the context, but
without performing any modification on it. Keras
was used to implement these neural architectures.

Two neural architectures were developed. The
first one was adopted from text classification re-
search (Coates and Bollegala, 2018). As depicted
in figure 1 it contains variants of Long Short-Term
Memories (LSTMs) with self attention followed
by average pooling and max pooling layers. It
also has a dropout (Srivastava et al., 2014) be-
tween 2 dense layers after the concatenate layer.
The model was trained with cyclical learning rate
(Smith, 2017).

The pooling layers in the first architecture are
considered as a very primitive type of routing

Figure 1: LSTM variant with self attention

Figure 2: Capsule net architecture

mechanism. The solution that is proposed is a
capsule network (Sabour et al., 2017). A capsule
network with a bi-directional GRU was also ex-
perimented with for this data set. The complete
architecture is shown in figure 2. There is a spa-
tial drop out (Tompson et al., 2015) between the
embedding layer and bi-directional GRU layer and
there is also a dropout (Srivastava et al., 2014) be-
tween two dense layers after the capsule layer.

The results and evaluation criteria of both tradi-
tional approaches and neural network approaches
are reported in the results section 3.

3 Results

3.1 Gazetteers
As described in the previous section, three differ-
ent gazetteers were tested using the development
and training sets. As the machine learning com-
ponent of the system would make the final pre-
diction, it was important to ensure the maximum
number of candidate locations. Therefore, it was
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Gazetteer Precision Recall F-Score
GN all 0.2359 0.7699 0.3612
GN 5000+ 0.3584 0.7563 0.4863
GN custom 0.3546 0.7678 0.4851

Table 1: Gazetteer evaluation results

vital to ensure the highest possible recall, while
achieving acceptable precision results.

Table 1 shows the precision, recall and F-score
values for each of the gazetteers, described in sec-
tion 2, run on the training set. Rows one and two
had a high recall but low precision, and a higher
precision, but lower recall, respectively. Row three
shows the results for the final gazetteer. It has the
best balance between precision and recall, and was
selected for use in the final system.

3.2 Identification of Locations

Locations in the training set were matched us-
ing the gazetteers and then extracted together with
their respective word window, in order to com-
pile a separate data set. This data was split into
a training set and an evaluation set for the ma-
chine learning classifiers. The training set con-
sisted of 80% of the total data set and the eval-
uation set, containing the gold standard annota-
tions from the previous training set, had the rest
of the 20%. The accuracy of each machine learn-
ing model evaluated on the evaluation set is shown
in Table 2. Predictions were considered to be ac-
curate if the machine learning model and the gold
standard matched, including correct and incorrect
classifications. All other cases were considered to
be non-accurate.

Our baseline - a zero-R classifier predicting ev-
ery instance as a falsely identified location had an
accuracy of 71.95%. All of our machine learn-
ing models were able to outperform the baseline
model significantly, even though the data set is
in-balanced. The capsule net architecture, which
provided the best performance at an accuracy of
88.73%, was selected for use in the final system.

3.3 Submission Results

After we had determined the best components for
the system, the GN custom gazetteer and the bi-
GRU + Capsule architecture, the whole system
was evaluated on the test set. The submission re-
sults are presented in four categories, determined
by the organisers. Table 3 shows the results for

ML Model Accuracy
Zero-R 71.95%
Random Forest 84.21%
SVM 83.44%
XGBoost 85.80%
Bi-LSTM/Bi-GRU + Max Pooling 87.75%
Bi-GRU + Capsule 88.73%

Table 2: ML models evaluation results

Test Precision Recall F-Score
Strict macro 0.8280 0.4746 0.6034
Strict micro 0.8168 0.3396 0.4798
Overlap macro 0.8980 0.4969 0.6398
Overlap micro 0.8936 0.3654 0.5187

Table 3: Final submission results

each. Overall, our system achieves the highest val-
ues in the overlap macro class, with the lowest in
the strict micro class. The system tends to achieve
acceptable precision scores, but at low recall val-
ues. This trend can most probably be explained
by the fact that many candidate locations are not
detected by the gazetteers. Together with the ma-
chine learning part discarding some proper loca-
tions, this has a dramatic affect on the recall.

4 Conclusion and Future Work

This paper presented the system we submitted to
the SemEval 2019 Task 12: Toponym resolution
in scientific papers. Evaluation of the system has
shown that a pipeline that combines traditional
string matching and advanced machine learning
can offer promising results. It has demonstrated
that a larger size of the gazetteer does not neces-
sarily have a positive effect on performance. It
has also made clear that a higher recall value for
the gazetteer look-up component could provide a
much better basis on which to train machine learn-
ing approaches. On the machine learning side, we
have demonstrated that employing word embed-
dings together with state-of-the-art algorithms can
be a viable way of classifying toponyms.

Due to time constraints, a large amount of
different parameters, as well as optimizing the
lookup algorithm and underlying gazetteers were
not tested or carried out. For future research we
hope to address these problems, so that a better
basis on which to train machine learning architec-
tures can be achieved, as well as more deep learn-
ing architectures.
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