
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1247–1253
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

1247

Team Taurus at SemEval-2019 Task 9: Expert-informed pattern
recognition for suggestion mining

Nelleke Oostdijk
Centre for Language Studies

Radboud University
Nijmegen, The Netherlands
N.Oostdijk@let.ru.nl

Hans van Halteren
Centre for Language Studies

Radboud University
Nijmegen, The Netherlands

hvh@let.ru.nl

Abstract
This paper presents our submissions to
SemEval-2019 Task9, Suggestion Mining.
Our system is one in a series of systems in
which we compare an approach using expert-
defined rules with a comparable one using ma-
chine learning. We target tasks with a syntac-
tic or semantic component that might be better
described by a human understanding the task
than by a machine learner only able to count
features. For Semeval-2019 Task 9, the expert
rules clearly outperformed our machine learn-
ing model when training and testing on equally
balanced testsets.

1 Introduction

In the field of natural language processing, ap-
proaches featuring machine learning (ML) nowa-
days predominate. These have been shown to
be quite effective with a wide range of tasks, in-
cluding text mining, authorship attribution, and
text classification. They are particularly suited
for dealing with large data volumes and are ro-
bust in the sense that they can handle quite ‘noisy’
data. Unlike expert-informed approaches where
rules need to be hand-crafted and apply only under
predefined conditions, ML approaches learn from
training data and are able to extrapolate. Propo-
nents of ML approaches tend to dismiss the en-
terprise of hand-crafting rules as difficult, error-
prone, time-consuming, and generally ineffective
as even an extensive set of complex rules is bound
to be incomplete and difficult to maintain.

Over the past years we have conducted a num-
ber of studies directed at the extraction of ac-
tionable information from microblogs. These in-
clude a range of topic areas and domains, in-
cluding the detection of threatening tweets (Oost-
dijk and van Halteren, 2013a,b), the identifica-
tion of potentially contaminated food supplements
in forum posts (Oostdijk et al., submitted), and

topic/event detection in tweets about natural dis-
asters (floods (Hürriyetoğlu et al., 2016), earth-
quakes (Hürriyetoğlu and Oostdijk, 2017; Oost-
dijk and Hürriyetoğlu, 2017)), about traffic flow
(Oostdijk et al., 2016) and about outbreaks of the
flu (Hürriyetoğlu et al., 2017). In each case we
have been exploring the role of the human ex-
pert in an expert-informed pattern recognition ap-
proach and a comparable ML approach, seeking
out the strengths and weaknesses of either and at-
tempting to arrive at a superior hybrid approach.

Semeval-2019, Task 9, Suggestion Mining
(Negi et al., 2019), appeared to be another task that
would lend itself to human rule building. As sug-
gestions may be phrased in many different ways,
successfully recognising that an utterance contains
a suggestion requires human understanding of the
context. Also, the amount of available training
data was quite limited so that bringing into play
the human expert’s knowledge of the forms that
suggestions may take would be an advantage, even
though the task was not too clearly defined.

As a counterpart to the human rules, we built a
machine learning system. For easier comparison
of the patterns suggested by the machine learner
and by the human expert, the learning component
was a rather simple odds-based technique which
still proved competitive in VarDial2018 (van Hal-
teren and Oostdijk, 2018). As features we used
character and token n-grams as well as syntac-
tic patterns. In addition, the machine learner
was somewhat expert-informed, as it was provided
with several word lists related to suggestions.

Below we first describe the rule systems built
by the human expert (Section 2) and the machine
learner (Section 3) in some more detail. Then we
proceed to the quantitative evaluation (Section 4),
followed by a qualitative analysis of the evaluation
phase (Section 5). We conclude with a discussion
of what we learned in this shared task (Section 6).

1248

2 Recognition with expert rules

The expert-rule-based system we applied uses a
dedicated (task-specific) lexicon and set of hand-
crafted rules in order to generate search queries.
The system only targets suggestions, i.e. we only
specify rules for patterns that should identify sug-
gestions. Furthermore, we chose to design and ap-
ply one and the same set of rules and lexicon for
both evaluation sets.

The lexicon comprises 1256 entries. Most of
the entries are single words. However, we also in-
cluded some multi-word items such in order to,
for example, at least and be able to as well as
phrase-like items such why not and how about.
The lexicon includes a few frequently observed
spelling variants, for example pls, plz, dont and
kinda. With each entry, part-of-speech-like infor-
mation is provided (e.g. verb, adjective, adverb
but also please, which is given its own class). Typ-
ical examples of some of the lexicon entries are:

awesome ADJ would AUXwould
just ADV very ADVintens
provide Vimp provide Vinfin

The rule set consists of 138 finite state rules.
They describe how lexical items can combine to
form search queries made up of multi-word n-
grams. To give some examples, AUXwould - BE

- ADVintens - ADJ matches e.g. would be very
helpful and would be really awesome; AUXshould
- ADV - Vinfin matches e.g. should directly
see and should properly support; and PLEASE -

Vimp e.g. please provide and pls fix. Rules
typically combine two to five elements (parts of
speech; POS). Given that some lexical entries are
multi-word items, the patterns actually describe
strings up to a length of nine words (one of the
strings matching the rule AUXcould - ADV - BE

- ADVintens - ADJ is, for example, could at the
very least be even more robust).

In previous tasks, pattern recognition using
word n-grams has been proven to be very ef-
fective. Moreover, the specification of the rules
and the lexicon is much easier and far less time-
consuming than would be the case for an all-
encompassing description, as human experts need
not concern themselves with describing elements
and details irrelevant to the task at hand. In this
particular case, trying to recognize suggestions,
we experienced the drawback of only having ac-
cess to the raw text input, something that did not

bother us as much with other tasks. What we
found was that in order to be able to recognize the
many suggestions that take the form of an imper-
ative sentence, we somehow needed to be able to
distinguish between an imperative verb form and
an infinitive or present tense verb. Noting that
imperative verbs tend to occur (near) sentence-
or clause-initially, we tried to account for this in
our rules. In some cases we could make use of
the presence of a comma, semi-colon or colon,
that would identify the (potential) beginning of a
clause. In such cases the punctuation mark was
included as an element in the rules describing im-
perative structures. In order to identify the begin-
ning of a sentence, we decided to automatically
insert markers in the input during the preprocess-
ing phase. These markers would also indicate the
type of sentence (interrogative MRKques vs declar-
ative or imperative MRKsint). Here the distinction
between interrogatives and other types of sentence
helped in distinguishing between do/don’t/dont as
an operator (auxiliary verb) in a question and as
an operator in an imperative sentence. MRKsint -

Vimp matches e.g Allow applications to define ...
and Ask for a room in ...; and MRKsint - ADV -

Vimp matches e.g. At least support ... and Just
don’t forget ...

3 Recognition by machine learning

For the ML approach we tried to use quite a wide
spread of feature types, namely (a) character n-
grams, with n ranging from 3 to 9; (b) token un-
igrams; (c) token n-grams, with n ranging from
2 to 4 (in which the individual positions can be
filled with the actual token, the POS tag, or the
word group (see below)); (d) syntactic structure of
the main clause; (e) syntactic rewrites of all con-
stituents; (f) syntactic n-grams (i.e. selected sub-
trees from the complete parse tree, e.g. function
and category of a mother and two daughters).

For the character n-grams and the tokens, we
applied a minimal level of pre-processing. In the
training data, we cleaned up misplaced quotes and
commas in the provided .csv-files. In the (later)
trial data and in the evaluation data, which came
in an HTML-format, we also replaced SGML-
entities by their character counterpart, e.g. "
was replaced by ".

The POS tags and syntactic structure were pro-
duced by the Stanford NLP system (Manning
et al., 2014). The dependency parse labeling was

1249

then transformed to a constituency tree that con-
formed (as much as feasible) to our own view of
English syntactic structure, being that developed
in the TOSCA project (Aarts et al., 1998). All syn-
tactic features were derived in either a fully lexi-
calized or fully unlexicalized version. Although
we feel the syntactic features can be of consid-
erable value, we consider this component a weak
spot in the current system, as the parser regularly
produces incorrect analyses. In the current task,
this was especially the case for the training data.

In the lexicalized syntactic features, as well
as in the token n-grams, a token slot could also
be filled with a word group indicator. We found
candidates for these lists by searching the 2006
Google n-gram collection (Brants and Franz,
2006) with some regular expressions, and then
cleaned them up manually. There were four word
groups. GrpADJgood contains 100 positive adjec-
tives, e.g. better and advisable, being the first 100
manually approved from 1774 sorted matches with
e.g. ˆit (would|could|might|may) be (.*)

(to|if). GrpADVinten covers 37 intensifying ad-
verbs, e.g. very and critically, selected from 448
matches with e.g. ˆ(would|could|might|may)

be (.*) ($adjgood) (to|if). GrpVadvise

contains 723 verbs that indicate what is
being suggested, e.g. adopt and edit, se-
lected from 987 matches with e.g. ˆ(i|we)

(suggest|advise|propose|request) you to

(.*). And GrpADVdescr has 41 adverbs that
can modify the advised action, e.g. always
and never, selected from 212 matches with e.g.
ˆ(suggest|advise|propose|request) that

you (.*) ($vadvise). When used in a feature,
each group indicator is concatenated with the
POS tag. The introduction of the word groups
appears to be effective: one of the strongest
markers, found 82 times with suggestions and
only twice with non-suggestions, is “It would be
GrpADJgoodJJ”.

Our choice of recognition system was influenced
by the desire to compare to the human rules. Af-
ter successful recognition, we wanted to be able to
identify which features contributed to the success.
For this experiment, we chose a very simple algo-
rithm. We counted the occurrences of each feature
in the training items marked as suggestions or as
non-suggestions and compared the two counts to
derive odds. For example, the character 8-gram
Please a was found 60 times in suggestion items

and once in non-suggestion items. Correcting for
the different numbers of items in the two classes,
and adding one to avoid division by zero, this led
to odds of 45.89 in favour of suggestions. In order
to avoid exaggerated counts because of repeated
items, we only used the first occurrence of each
item, leaving us with 1758 suggestions and 5339
non-suggestions. This removal was done even if
the repeated items had different suggestion labels.
For the actual recognition, we only used features
that had odds higher than or equal to 3:1. In the
prediction phase, the odds of all features present in
an item were taken and their sum was compared to
a threshold, which we chose by tuning on the trial
data.

As with other tasks, we investigated hybridization
of our two approaches. In this case, straightfor-
ward combination of the final choices seemed not
very fruitful on the trial data. However, when we
compared the suggestions for each individual fea-
ture type in the machine learning with those of
the expert rules, we found especially syntactic n-
grams were able to identify suggestions not found
by the rules, which were limited to contiguous
n-grams. We therefore built a combination that
marked those items as suggestions that were rec-
ognized as such by the rules, plus those for which
the recognition score by only the syntactic n-gram
features was over the optimal threshold for the trial
data. The relative quality of rules and machine
learning on the trial data for Subtask B made us
decide not to attempt combination there.

4 Quantitative evaluation

In this discussion, we do not want to compare to
other systems in the shared task. For this we re-
fer the reader to the task description paper (Negi
et al., 2019), where it can be seen that more in-
tricate machine learning systems, especially those
using pre-trained language models, perform much
better. We will rather examine how our inter-
nally comparable systems behave on the four item
sets. In order to make the measurements com-
patible, we first have to make some adjustments.
Both trial sets contained equal numbers of sugges-
tions and non-suggestions, so that precision and
recall were equally valuable. In the evaluation
sets, there were more non-suggestions than sug-
gestions, so that precision has more influence than
recall. For comparison we needed to recalculate
precision (and hence F1; recall is unchanged) by

1250

Approach Meas TrialA EvalA EvalBalA TrialB EvalB EvalBalB
Rules Prec 0.8213 0.4521 0.8761 0.9673 0.8669 0.8991

Rec 0.8851 0.7586 0.7586 0.8045 0.7299 0.7299
F1 0.8520 0.5665 0.8132 0.8784 0.7925 0.8057

Learn Prec 0.7914 0.4848 0.8898 0.5802 0.5099 0.5873
Rec 0.8716 0.7356 0.7356 0.9134 0.8851 0.8851
F1 0.8296 0.5848 0.8054 0.7096 0.6471 0.7061

Combo Prec 0.8179 0.4558 0.8778 NA
Rec 0.8953 0.7701 0.7701 NA
F1 0.8548 0.5726 0.8204 NA

Baseline Prec 0.5872 0.1566 0.6141 0.7277 0.6877 0.7507
Rec 0.9324 0.9195 0.9195 0.8267 0.7845 0.7845
F1 0.7206 0.2676 0.7364 0.7740 0.7329 0.7672

Table 1: Quality of submitted systems and organiser baseline.

Approach TrialA EvalA EvalBalA TrialB EvalB EvalBalB
Weighted sum 0.8291 0.6429 0.8110 0.7109 0.6637 0.7170
Char n-grams 0.7968 0.6444 0.7781 0.6782 0.6113 0.6748
Token 1-gram 0.7492 0.5411 0.7444 0.6006 0.5320 0.5563
Token 2-gram 0.8045 0.5882 0.7100 0.6006 0.5256 0.5436
Token 3-gram 0.7968 0.5342 0.6436 0.3955 0.3363 0.3420
Token 4-gram 0.7664 0.4348 0.5023 0.1201 0.1027 0.1029
Structure main clause 0.7580 0.4667 0.5588 0.3866 0.3029 0.3090
Syntactic rewrites 0.4888 0.3068 0.4454 0.1849 0.2085 0.2126
Syntactic n-grams 0.7601 0.5069 0.7297 0.7419 0.6946 0.7416

Table 2: F1-score for each test set for each feature type, using model learned from training material for Subtask
A, and oracle thresholds.

extrapolating the systems’ behaviour to a balanced
testset. E.g., the expert rules had 80 false ac-
cepts on a total of 146, so a precision of 66/146
i.e. 0.4521. In a balanced dataset, 87 instead of
746 non-suggestions, not 80/746, but 9.3298/87
would be falsely accepted. Precision would be
66/(66 + 9.3298) i.e. 0.8761. We stress that we
are not trying to make out results look more im-
pressive, but merely want to make behaviour on
trial and evaluation sets comparable.

Table 1 shows the evaluation results for our
three systems and the organisers’ baseline, with
the adjusted scores shown in the columns marked
EvalBal. Here, we can see that the enormous drops
in quality between TrialA and EvalA were an il-
lusion, caused by the difference in balance. Also,
our three systems are now consistent in their order:
expert rules outperform machine learning, but the
(very eclectic) combination scores yet a bit better.
In fact, we now see that all systems gain preci-
sion when going from TrialA to EvalA, but at the

cost of recall. For the machine learner, this is not
exclusively due to overtraining in threshold opti-
mization, as we see below in the discussion of Ta-
ble 2. A discussion of the results for the expert
rules can be found in Section 5. The lower de-
gree of change for the baseline can probably be
explained by the rather general level of the rules
there. Going from Subtask A to Subtask B, the
machine learner suffers a substantial loss in qual-
ity, which is understandable as it is trained only
on Subtask A data. Interestingly, there are almost
no differences between TrialB and EvalB. For the
expert rules, the situation is rather different. From
TrialA to TrialB, we see a precision gain and re-
call loss, leading to a slight increase in F1; but the
move from TrialB to EvalB leads to a serious drop
in both precision and recall.

In Table 2, we show the F1-score for each indi-
vidual feature type, as well as for the sum for com-
parison. On TrialA, the most useful individual fea-
ture types appear to be token bi- and trigrams and

1251

Feature TrainA TrialA EvalA TrialB EvalB
Total items 1758/ 296/ 87/ 404/ 348/

5339 296 746 404 476
CG8 ##Allow# 63/2 14/0 5/0 0/0 0/0
T4 WWWG It would be GrpADJgoodJJ 82/2 13/1 4/0 0/0 0/0
CG7 re#shou 31/1 8/0 0/1* 0/0 0/0
CG8 Please#a 60/1 6/0 2/0 0/0 0/0
SRFC S V VP A VBx OD NP A PP 28/0 4/0 1/0 0/0 1/0
SCFFCCL S CS AJP(nice) A SBAR(if) 20/1 4/0 1/0 1/0 0/1
CG8 #Provide 20/0 3/0 1/0 0/0 0/0
SCFFCCL ROOT UTT S(suggest) NOFUpunc .(.) 14/0 3/0 1/0 4/0 5/0
T3 WWW # I ’d 24/0 4/1 0/3* 2/0 1/0
SCFFCCL VP AVB MD(should) MVB VBN(GrpVadvise) 46/5 4/1 3/1 1/0 3/1*

Table 3: Ten high-odds features (excluding correlated ones), with effectiveness on all test sets. Each cell contains
observation counts in suggestions/non-suggestions. Hash marks indicate spaces and out-of-sentence positions. The
asterisk (*) means we disagree on one of the non-suggestions, but did use the provided labels.

character n-grams. The other feature types lag be-
hind, but do help reach a higher score with the sum
of all feature scores. Syntactic rewrites by them-
selves have a much lower F1, but this is due to
their low recall potential (precision 0.7267, recall
0.3682). When moving to EvalA, we see that char-
acter n-grams and token unigrams maintain their
quality, indicating that the same kind of words are
being used, but higher n-grams and syntax lose
severely, which suggests that EvalA is more dif-
ferent from the training data than TrialA in how
words are combined.

When we proceed to Subtask B, all feature types
lose quality. As we moved to a different domain,
and a different genre, this is not surprising. Ma-
chine learning depends on having training and test
data that is as similar as possible. It is encourag-
ing to see that the syntactic n-grams do manage to
perform similarly to Subtask A. This means that
machine learning at a more abstract level is able to
move to another domain more easily.

If we examine which features are responsible
for the recognition, we see that all play some role.
There are, however, some more effective ones.
We show ten of these in Table 3. Note that this
is a manual selection, as simply taking the ten
highest scoring ones would show only two basic
patterns in various guises, e.g. Please as several
character n-grams, as token unigram, in a token
bigram, and as an adverbial in a syntactic n-gram.
Some of the ten patterns need explanation:
CG7 re#shou is part of the token bigram there
should. SRFC S V VP A VBx OD NP A PP means that

a sentence is being rewritten as a verb phrase (i.e.
a sequence of verb with possibly additional inter-
nal adverbials), followed by an adverbial realized
by a non-finite verb, then a direct object realized
by a noun phrase, and finally an adverbial realized
by a prepositional phrase. If we search for exam-
ples, we find e.g. Please allow the access to phone
filesystem.. It turns out that Stanford CoreNLP
marks Please as a verb, placing allow as head
of an “xcomp” clause, which confuses our anal-
ysis transformer and makes allow an adverbial.
This is clearly wrong but, as it is done consis-
tently, this pattern still provides a good marker.
SCFFCCL VP AVB MD(should) MVB VBN(GrpVadvise)

indicates that within a verb phrase, we find both
the modal should and a past participle of one
of the verbs for something that is advisable.
SCFFCCL S CS AJP(nice) A SBAR(if) represents
a sentence with a subject complement nice
and an adverbial clause headed by if. And
SCFFCCL ROOT UTT S(suggest) NOFUpunc .(.)

represents a sentence with a main verb with
lemma suggest, combined with a period as punc-
tuation, which nicely rules out questions with
suggest. All these patterns have a good precision,
but their recall is obviously limited. The first two
manage to get about 5 percent on Subtask A, then
we quickly drop to 2.5 and 1. In general, recall
is similar for TrialA and EvalA. However, the
strongest markers are absent altogether in Subtask
B, where suggestions are apparently worded
differently. Only the final two syntactic n-grams
show a significant presence, which is in line with

1252

the discussion on feature types above.

5 Qualitative evaluation

Upon inspection of the results obtained on the
evaluation set with the expert rules, we specifically
looked at the false accepts and false rejects. Con-
trary to what we thought might happen, only very
few cases were missed out on due to omissions in
the lexicon.

With cases that we missed (i.e. where we failed
to recognize a suggestion) we did not find any
clear clues as to what could be added to the pat-
terns already specified in our rules set. There were
some cases involving imperatives that we missed
due to the fact that the punctuation mark we re-
lied upon appeared to be absent, while gleaning
the sentence type (interrogative) from the input fi-
nal punctuation mark failed in cases where the in-
put consisted of two or more sentences.

As for false accepts, we found that several cases
were wrongly taken to be suggestions on the basis
of a matching imperative pattern. Here the ear-
lier problem of being unable to distinguish impera-
tive verb forms from infinitives and present tenses
no longer presented itself. Instead, word forms
that are ambiguous between noun and verb such as
map and phone were mistakenly held to be imper-
ative verbs. Other false accepts were cases where
otherwise highly successful rules proved to be too
limited in their scope. For example, the pattern
AUXwould - Vinfin would match would allow
but then the sentence actually continues with but
so that what initially looks like a suggestion turns
out to be an observation, e.g. The control would
allow for the use of the contact picker but allows
for manual entry and deletion of contacts. Simi-
lar cases involving but were found with other pat-
terns. In the cases of single instances slight modi-
fications of the rules might have avoided wrong-
fully identifying something as a suggestion but
there is very little evidence to go by, so there is no
telling how it would impact on a different dataset.

We also noticed that some patterns occurred (al-
most) exclusively in Subtask A or B. Building sep-
arate rule sets for the two tasks might hence have
been beneficial. However, the whole point of the
exercise in Task 9 was to see whether a rule set can
be ported to a new, mostly unknown, domain.

6 Discussion

The task was more difficult than we had expected.
When we set out, we thought we knew what a
suggestion was. However, after confronting our
first version of the expert pattern system with the
training data, we needed to review our ideas. Af-
ter careful error analysis, we adapted our system
and came to achieve quite acceptable results on the
trial data, yet there remained a gap between what
we (intuitively, as experienced language users)
would consider a suggestion and quite a number
of other cases which were labelled as such. In
our view, there is a fine line between a sugges-
tion and a non-suggestion, and perhaps one needs
more context than a single sentence in order to tell
which it is. We speculate that this may well ex-
plain the drop in performance. This is in line with
the fact that the datasets provided, i.e. the train-
ing, trial and evaluation data, were rather different
in nature: the training data comprised many inputs
that were made up of multiple sentences, while the
trial data and certainly the evaluation data mostly
comprised single sentence inputs. Another factor
which may have been at play here (and again we
can only speculate), is that the annotations pro-
vided were made by different groups of annota-
tors. This would then also explain some of the in-
consistencies in the labeling, where similar cases
were labeled differently.

Moving to our system, the expert-informed rule
approach used previously with other tasks once
more showed its strengths. The word n-gram pat-
terns used are simple yet quite robust and effec-
tive, targeting specifically those parts of the input
that are deemed relevant for the task at hand, with-
out requiring these to be linguistically complete
or well-formed phrases or clauses. There are no
a priori limitations as to the length of the word
n-grams. Compiling a lexicon and a set of rules
requires limited effort. More than before, how-
ever, with the present task we experienced the lim-
itations of using only contiguous word n-grams.
Moreover, having only access to the raw text, in-
formation about the syntactic structure of a sen-
tence was lacking, which in specific cases is key
to being able to successfully identify a suggestion.
We were able to fill some of this gap by combining
with the ML approach, but improvements were as
yet meagre as the parser was not performing opti-
mally. Still, we have good hopes for this form of
expert-informed hybridization.

1253

References
Jan Aarts, Hans van Halteren, and Nelleke Oostdijk.

1998. The linguistic annotation of corpora: The
TOSCA analysis system. International journal of
corpus linguistics, 3(2):189–210.

Thorsten Brants and Alex Franz. 2006. Web 1T 5-gram
Version 1. Linguistic Data Consortium, Philadel-
phia.

Hans van Halteren and Nelleke Oostdijk. 2018. Iden-
tification of differences between Dutch language va-
rieties with the VarDial 2018 Dutch-Flemish subtitle
data. In Proceedings of the Fifth Workshop on NLP
for Similar Languages, Varieties and Dialects (Var-
Dial 2018), Santa Fe, New Mexico, USA. Associa-
tion for Computational Linguistics.

Ali Hürriyetoğlu, Nelleke Oostdijk, Mustafa Erkan
Başar, and Antal van den Bosch. 2017. Supporting
experts to handle tweet collections about significant
events. In International Conference on Applications
of Natural Language to Information Systems, pages
138–141. Springer.

Ali Hürriyetoğlu, Jurjen Wagemaker, Antal van den
Bosch, and Nelleke Oostdijk. 2016. Analysing the
role of key term inflections in knowledge discovery
on twitter. In Proceedings of the 2nd International
Workshop on Knowledge Discovery on the Web (KD-
WEB16). Cagliari, Italy.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Nelleke Oostdijk, Ali Hürriyetoğlu, Marco Puts, Piet
Daas, and Antal van den Bosch. 2016. Informa-
tion extraction from the social media: A linguis-
tically motivated approach. In Actes de la con-
frence conjointe JEP-TALN-RECITAL 2016, volume
10: Risque et TAL: 21-33. PARIS Inalco du 4 au 8
juillet 2016.

http://ceur-ws.org/Vol-1748/paper-18.pdf
http://ceur-ws.org/Vol-1748/paper-18.pdf
http://ceur-ws.org/Vol-1748/paper-18.pdf
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010

