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Abstract

This paper describes DM-NLP’s system for to-
ponym resolution task at Semeval 2019. Our
system was developed for toponym detec-
tion, disambiguation and end-to-end resolu-
tion which is a pipeline of the former two.
For toponym detection, we utilized the state-
of-the-art sequence labeling model, namely,
BiLSTM-CRF model as backbone. A lot
of strategies are adopted for further improve-
ment, such as pre-training, model ensemble,
model averaging and data augment. For to-
ponym disambiguation, we adopted the widely
used searching and ranking framework. For
ranking, we proposed several effective features
for measuring the consistency between the de-
tected toponym and toponyms in GeoNames.
Eventually, our system achieved the best per-
formance among all the submitted results in
each sub task.

1 Introduction

The toponym resolution task is aimed to detect to-
ponyms in scientific papers and link them to en-
tities in a geographical knowledge base (GeoN-
ames1 in this task). A toponym is a proper name of
a place or geographical entity that is named, and
can be designated by a geographical coordinate,
including cities, countries, lakes or monuments.

We developed an end-to-end toponym resolu-
tion system (for subtask 3) which is a pipeline
of toponym detection (for subtask 1) and disam-
biguation (for subtask 2). We model the detection
task as a Named Entity Recognition (NER) and
address it with popular sequence labeling frame-
work. For disambiguation task, we adopted the
searching and ranking framework which is widely
used in Entity linking task.

Toponym is a special type of entity similar to
the location entity in the general NER task. Thus,

1https://geonames.org

the well-studied NER models may be effective for
detecting toponyms. The most successful NER
models (Chen et al., 2006; Lample et al., 2016;
Huang et al., 2015; Yao and Huang, 2016) are se-
quence labeling models, including the traditional
CRF (Conditional Random Field (Lafferty et al.,
2001)) and some variants of RNNs (Recurent Neu-
ral Networks) proposed recently, like LSTM-CRF,
BiLSTM-CRF, BiLSTM-CNN-CRF, etc. In this
paper, We utilize the most popular model, i.e.,
BiLSTM-CRF for toponym detection. Beyond the
model, a prevalent pre-training embedding named
ELMo is used after fine-tuning. Model averaging
and model ensemble are used for avoiding over-
fitting. Data sets from other NER tasks are ex-
ploited to augment the training data. We also pro-
posed a dictionary based method for detecting to-
ponyms in tables separately. Since tables have
some peculiarities, i.e., well formatted yet without
meaningful context for toponyms in them.

Toponym disambiguation can be seen as a vari-
ant of entity linking (EL) problem, which links
entity mentions in articles to entities in knowl-
edge base (KB) like Wikipedia. A typical EL sys-
tem consists of candidate entity generation and
ranking as well as unlinkable mention prediction
(Shen et al., 2015). The major challenge is that
the KB of toponym lacks of background informa-
tion other than toponym names, types and coordi-
nates. Therefore, we follow the typical EL method
(Hoffart et al., 2011) for toponym disambiguation
and propose a classification based ranking method.
Specifically, We recast the problem as a binary
classification task asking that whether a toponym
in GeoNames is a link for given toponym. If
more than one positives exist, they are ranked ac-
cording to their confidence scores. Coupled with
the classifier, We introduce many features which
measure the consistency between toponyms effec-
tively, including name string similarity, candidate

https://geonames.org
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attributes, contextual features and mention list fea-
tures.

Our contributions to this task can be summa-
rized as follows:

• Proposing an approach to process tables sep-
arately from the main body.

• Proposing a novel data augment approach to
exploit external data.

• Designing many novel and effective features
for disambiguation.

2 Methodology

2.1 Overview

Our system for toponym resolution consists of to-
ponym detection and disambiguation. The for-
mer is based on a sequence labeling model and is
enhanced with pre-training, model ensemble and
data augment. The later is a two-stage approach
which obtains candidates by searching and does
disambiguation via classification.

2.2 Toponym Detection

A scientific article usually contains a main body
and tables. Detecting toponyms in these two types
of content are different due to toponyms in tables
lack of contextual information. Consequently, we
adopt two different approaches.

2.2.1 Detection in Main Body
We recast the problem the Toponym Detection in
main body as a Named Entity Recognition task
and we make use of the BiLSTM-CRF model with
the contextual information as input. To allevi-
ate over-fitting, we apply model averaging train-
ing strategies. Finally, a voting method is utilized
to benefit from multiple models.

Input Information Based upon our previous
work (Ma et al., 2018) on sequence labeling, our
system incorporates four types of linguistic infor-
mation: Part-of-Speech (POS) tags, NER labels,
Chunking labels and ELMo (Peters et al., 2018).
The former three are generated by open source
tools. In detail, we use Stanford CoreNLP (Man-
ning et al., 2014) to annotate POS tags and NER
labels, and use OpenNLP 2 to annotate Chunk-
ing labels. These information are represented as
distributional vectors which are randomly initial-
ized and trained with the entire model. ELMo

2https://opennlp.apache.org/

Figure 1: Architecture of BiLSTM-CRF model

is a deep contextualized word representation that
models both complex characteristics of word use,
and how these uses vary across linguistic con-
texts. These word vectors are learned functions of
the internal states of a deep bidirectional language
model (biLM), which is pre-trained on a large cor-
pus of texts. We fine tuned ELMo on the weakly
labeled data provided by the organizers, so that the
vectors will be adapted to this domain.

BiLSTM-CRF Model As illustrated in Figure
1, the entire model consists of five layers: word
representation layer, input layer, feature extraction
layer, output layer and CRF layer. The word repre-
sentation layer is a group of BiLSTM with shared
parameters. Each BiLSTM corresponds to a word.
The BiLSTM takes a sequence of character (char-
acters in a word) embedding as input and concate-
nates the final hidden states (forward and back-
ward) as the representation of the word. Designing
a neural network architecture with character repre-
sentation as input is appealing for several reasons.
Firstly, words which have the same morphological
properties (like the prefix or suffix of a word) often
share the same grammatical function or meaning.
Secondly, a character-level analysis can help to ad-
dress the out-of-vocabulary problem, Thirdly, cap-
italization may provide additional information. A
recent study (Lample et al., 2016) has shown that
BiLSTM is an effective approach to extract mor-
phological information from characters of words,
and consequently help to improve the performance

https://opennlp.apache.org/
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in NER and POS tagging.
The input layer generates the final representa-

tion of each word by concatenating three types of
vectors, the pre-trained word embedding, the word
vector given by the character BiLSTM and the
vector of linguistic information (POS label, NE la-
bel, chunking label and ELMo vector).

The feature extraction layer is another BiLSTM.
RNNs are well-studied solutions for a neural net-
work to process variable length input and have a
long term memory. As a variant of RNNs, the
long-short term memory (LSTM) unit with three
multiplicative gates allows highly non-trivial long-
distance dependencies to be easily learned. There-
fore, we use a bidirectional LSTM network as pro-
posed in (Graves et al., 2013) to efficiently make
use of past features (via forward states) and future
features (via backward states) for a specific time
frame.

The output layer is a fully connected feed for-
ward network which outputs the probability distri-
bution over all labels.

The CRF Layer is use on the top to decode the
appropriate label sequence. For sequence label-
ing tasks, such as POS tagging or NER, the adja-
cent labels are often strongly related (e.g. I-ORG
cannot follow B-PER or I-LOC in NER tasks like
CoNLL2003). CRF model is good at modeling
these constraints.

Model Averaging Random initialization and
shuffling order of training sentences introduce
randomization when training a model. During
our experiments, we found that model predictions
vary considerably even when the same pre-trained
data and parameters are used. In order to uti-
lize the power of model ensemble and avoid over-
fitting problem, we use a script provided by ten-
sor2tensor to average values of variables in a list of
checkpoint files generated by BiLSTM-CRF net-
works.

Ensemble By using different pre-trained word
embeddings or using different linguistic informa-
tion, we trained multiple models, we apply an av-
erage voting strategy to compute the final decision
of our system from all models. Experimental re-
sult shows that voting indeed boosts the overall
performance.

2.2.2 Detection in Tables

As important components of a scientific article, ta-
bles have specific formats:

• They usually begin with the word ’Table’.

• The first line is called the header which indi-
cates the meaning of each column.

• All rows follow the schema defined by the
header of the tables.

According to our analysis of the training data,
many toponyms are mentioned in tables. Nev-
ertheless, the contexts of these toponyms differ
significantly from contexts of toponyms in main
body. The later are always meaningful sentences.
As a result, performances may drop significantly
if a model trained to recognize toponyms in the
sentences of the main body is used to recognized
toponyms occuring in tables. Thus, we propose a
novel approach for detecting toponyms in tables
which are processed separately with details as fol-
lows:

1. Analyze the mean and variance of words
counts (split by space), within a window of
text. Decreasing the size of window until the
variance is smaller than a threshold.

2. If the word ’Table’ is found in the context
of the window, take the n-gram within this
window as toponym if it exists in GeoNames
database.

2.2.3 Postprocess
Rule based postprocessing is applied in the end of
the detection step to avoiding errors which occur
frequently in development set. The following rules
are applied to a toponym for generating possible
corrections, which are confirmed and used to re-
place the original mention by figuring out whether
a correction exists in GeoNames.

• If a word of locality, such as eastern, ap-
pears before a toponym within three words,
we correct the candidate predicted by adding
the word of locality to the toponym.

• If a toponym ends with a suffix word (e.g.,
Province) which indicates an administrative
division, we make a candidate correction by
removing the suffix when the suffix occurs in
a predefined black list.

• If an abbreviation appears after a toponym
and the abbriviation consists of of all the cap-
ital letters of the words composing the name
of the toponym, we include the abbreviation
as a new candidate toponym.
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2.3 Toponym Disambiguation
Our approach for disambiguation has two stages.
First, we retrieve possible candidate toponyms
from GeoNames database using a search engine
with a toponym mention as query. Second, a bi-
nary classifier with carefully designed features are
applied to each candidate to figure out whether it
is the appropriate place that the mention refers to.

2.3.1 Candidate Generation
This stage is based on an offline search engine im-
plemented with Lucene3. All GeoNames records
were indexed in advance. Then, we search the
index with the toponym mentions given by the
detection module as queries. In order to ensure
higher recall rate, we addressed the alias issue. We
expand the query by alternate names and enable
fuzzy matching searching.

Alternative names of given toponym mentions
are obtained by the following ways:

1. Alternative names recorded in GeoNames
dump files, including allCountries, alternate-
names, countryInfo.

2. Abbreviations of state names in America
given by Wikipedia4.

3. Alternative names mined by pattern match-
ing from the article where the mention ap-
peared. For example, by using the pattern
’<mention>, (<abbr>)’ we can get the al-
ternate name ’RSA’ of mention ’Republic
of South Africa’ from sentence ’Republic of
South Africa, (RSA)’.

Fuzzy matching is enabled since there are some
incorrect spellings in source articles which lead
to empty results. However, fuzzy matching intro-
duces noises, so it is enable only if the original
query recalls nothing.

2.3.2 Candidate Ranking
We formulate the candidate ranking problem as a
binary classification problem. Given a mention
detected, several potential candidates are retrieved
during candidate generation stage. We take every
mention and a candidate pair as input for a binary
classifier to decide whether the mention refers to
the candidate. We consider the classification con-
fidence as the candidate ranking score score〈m, e〉

3https://lucene.apache.org/
4https://en.wikipedia.org/wiki/List_

of_U.S._state_abbreviations

to select the most likely candidate. To deal with
context-poor KB problem, we design information
rich features and use the ensemble of model strat-
egy.

Features We divide all the features into four
groups, i.e., Name String Similarity, Candidate
Attributes, Contextual Features and Mention List
Features.

1. Name String Similarity Following previous
work (Shen et al., 2015), we developed fea-
tures capturing similarity between the can-
didate’s and the mention’s name, including
Exact Match, Mention Substring of Candi-
date, Candidate Substring of Mention, Men-
tion Starts Candidate Name, Candidate Starts
Mention Name, Jaccard Similarity, Leven-
shtein Similarity. All names are lowercased
in advance and the name of candidate may
change into its alternate names if exist.

2. Candidate Attributes This set of features
are based on target KB’s (GeoNames) records
and capture some priority of candidate, in-
cluding Popularity, Number of Ancestors,
Code Level.

3. Contextual Features Inspired by previous
work (Guo et al., 2013), We designed this set
of features to measure the contextual similar-
ity between the mention and the candidate.
Firstly, for mentions, we take multiple lev-
els of context around mentions in documents
as mention-side context, including senten-
ceparagraph and document level. Secondly,
since target KB (GeoNames) lacks context
information, we resort to Wikipedia to re-
quest candidate’s page via API 5. Consider-
ing computation efficiency and avoiding the
noise introduced by whole wiki page, we just
use the summary (first description paragraph)
of the page as candidate-side context, instead
of multiple levels. Finally, Bag-of-words
representation is employed to mention-side
and candidate-side context. Several similar-
ity methods have been explored, including
word overlap, cosine similarity and Jaccard
similarity.

4. Mention List Features We found that the
true candidate (or it’s ancestor candidates)

5https://github.com/goldsmith/
Wikipedia

https://lucene.apache.org/
https://en.wikipedia.org/wiki/List_of_U.S._state_abbreviations
https://en.wikipedia.org/wiki/List_of_U.S._state_abbreviations
https://github.com/goldsmith/Wikipedia
https://github.com/goldsmith/Wikipedia
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may also refer to another mention in the same
document. This makes sense because to-
ponyms often co-occur with their child or
parent toponyms in medical articles or just
occur repeatedly in the same document. We
developed so called Mention Neighbors Fea-
tures, which take all mentions in a docu-
ment as mention list. Similar to mention-
side context, every mention has its sentence,
paragraph, and document mention list. We
encode the relationship between multi-level
mention lists and by checking whether the
candidate name, its ancestor name or alter-
nate names occur in the mention lists. This
set of features can capture the coherence to
some extent.

Classification Model We use LightGBM (Ke
et al., 2017) as our base model, which gets higher
performance compared with other gradient boost-
ing models such as gbdt, xgboost and more tradi-
tional models like LR and SVM.

Ensemble & Stacking We select different hy-
per parameters of LightGBM to build a set of base
models. Hyper parameters vary in number of esti-
mators, number of leaves, and learning rate. Fur-
thermore, We add a soft-vote classifier as model
ensemble, which returns the class label as argmax
of the sum of predicted probabilities. Based on
all the base models (several LightGBMs, two vote
classifiers), we apply a model stacking strategy
that takes the outputs (probabilities and labels) of
all base models as input and train a simple lin-
ear classifier called stacking model and return the
stacking model output as the final output.

3 Experiments

3.1 Toponym Detection
3.1.1 Dataset and Settings
Given 105 medical papers from PubMed Central6

for developing system, we randomly divided the
data into training, development and test set by a
ratio of 5:1:1. To avoiding instability of experi-
mental results, we repeat this process 5 times and
yield different distributions. All the results shown
below are average values among these five distri-
butions.

Data Augment The official training data is
smaller than the dataset used in general NER
task. Therefore, we expanded the training data

6https://www.ncbi.nlm.nih.gov/pmc/

by selecting external data from CONLL2003 and
ontonotes5.0. Sentence containing GPE or LOC
entities were selected. A binary classifier 7 was ap-
plied to distinguish the external sentences from the
official sentences and outputs a confidence score.
If the score lower than a threshold, in other words,
the external sentence is similar to the official sen-
tence, we add the external sentence into training
data. Finally, we obtained 8000 extra training sen-
tences, about 32% of the total training data.

Preprocessing Articles are segmented into sen-
tences by NLTK and segmentation errors are
corrected based on NER results (generated by
CoreNLP). For example, ”St. Louis” is split by
’.’ incorrectly. But it is a location according to
NER Results.

3.1.2 Ablation Study
Table 1 shows the ablation study of the detec-
tion model. As mentioned above, the baseline
model is a Char-LSTM-LSTM-CRF model (Lam-
ple et al., 2016). We tried two types of pre-trained
embeddings, GloVe (Pennington et al., 2014) and
PubMed 8. Since the PubMed is trained on in-
domain data, it achieves better results. Thus, all
the rest results are based on embeddings trained
on PubMed dataset.

Among the four linguistic information, adding
ELMo yields the most improvement, while adding
the other three yield a little. we successfully use
voting, a simple ensemble method to take advan-
tage of multiple models trained by using different
linguistic information, and it works.

All techniques proposed contribute to the per-
formance according to the results. Bring in more
training data indeed works but the improvement is
feeble. Processing tables separately increases the
recall since there are many tables containing to-
ponyms.

The best result is obtained by leveraging all
the approaches in combination, it outperforms the
baseline model significantly.

3.2 Toponym Disambiguation

3.2.1 Dataset and Settings
Data The distributions of articles is the same as
those experiments of Toponym Detection. Exter-

7The training data for this classifier is obtained by mixing
the official and external sentences with source information
kept. The threshold is chosen by intuition.

8trained on PubMed and Wikipedia articles, downloaded
from http://bio.nlplab.org/

https://www.ncbi.nlm.nih.gov/pmc/
http://bio.nlplab.org/
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Model Precision Recall F1-score
Baseline+PE GloVe 85.61 82.81 84.19

PubMed 87.60 83.24 85.37
Baseline+PE+LF POS 87.73 83.19 85.40

NER 87.38 83.55 85.42
Chunking 87.92 83.47 85.64

ElMo 89.40 88.34 88.87
Baseline+PE+LF+ME 89.63 88.51 89.06
Baseline+PE+DA 88.25 83.73 85.93
Baseline+PE+TP 88.36 84.78 86.53
Baseline+PE+PP 87.96 83.41 85.62
+All 90.69 89.74 90.21

Table 1: Experiment results of Detection. Abbreviations: DA, Data Augment; PPE, Pubmed Pre-trained Embed-
ding; PP, Post Process; TP, Table Process; LF, Linguistic Features; ME, Model Ensemble

nal data is not included since they contains no an-
notation for disambiguation task.

Hyper-parameters LightGBM models trained
with different hyper-parameters constitute the base
model set. The number of estimators varies from
200 to 800, number of leaves from 30 to 50, and
the learning rate takes one of 0.05, 0.1. Variance
threshold is set as 0.9 at feature selection phase.

3.2.2 Candidate Ranking Results
Table 2 shows the experimental results. We
compare the baseline method, single LightGBM
model, soft-vote method, and stacking method.
The baseline method take the candidate with most
population as output.

From Table 2, we can see the LightGBM model
beat the baseline method, and model combination
strategy improve the performance further. We take
outputs of all LightGBM models and soft-vote
model as input samples for training a stacking LR
model and get the best performance of 89.85%.

For the final run in competition, we chose the
stacking method and retrained all base models on
the entire train set and predicted on the test set.

3.2.3 Ablation Study
We also conducted an ablation study to investigate
the impact of each group of features. From Ta-
ble 3, we can see Name String Similarity is far
below the baseline method(80.45%) and and us-
ing the population as a feature is a strong heuristic
in fact. Although attribute features take the popu-
lation as one feature but the classifier using these
features still fail to beat the baseline. A reasonable
explanation is some other attributes act as noise.

Not surprisingly, Contextual Features play a

Model Prec. Rec. F1
baseline 79.96 80.94 80.45

lightGBM-single 89.30 87.03 88.15
soft-vote 89.44 87.83 88.63
stacking 90.57 89.14 89.85

Table 2: Main results of Candidate Ranking on entire
trainset

Prec. Rec. F1
+name similarity 60.40 63.06 61.70

+ attribute 75.98 76.75 76.36
+ contextual 86.56 85.31 85.93

+ mention list 89.30 87.03 88.15

Table 3: Ablation study for Ranking features

great role and bring an essential improvement sur-
passing the baseline. Interestingly, Mention List
features, allow a bigger progress over Contextual
Features. We think they capture the particularity
of toponym disambiguation and some coherence.

4 Conclusion and Future works

This paper introduces our system for toponym res-
olution which is a pipeline of sequence labeling
model based detection and classification model
based disambiguation. More works are worthy to
be done in the future, such as developing a more
sophisticated approach for detection toponyms in
table, adopting graph-based disambiguation meth-
ods and address this task in an end-to-end manner.
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