
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 617–621
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

617

Ghmerti at SemEval-2019 Task 6: A Deep Word- and Character-based
Approach to Offensive Language Identification

Ehsan Doostmohammadi♣,♠, Hossein Sameti♣, Ali Saffar♠

♣Speech Processing Lab, Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran

♠NazarBin, Tehran, Iran
e.doostm72@student.sharif.edu, sameti@sharif.edu,

saffar@nazarbin.com

Abstract

This paper presents the models submitted by
Ghmerti team for subtasks A and B of the Of-
fensEval shared task at SemEval 2019. Offen-
sEval addresses the problem of identifying and
categorizing offensive language in social me-
dia in three subtasks; whether or not a content
is offensive (subtask A), whether it is targeted
(subtask B) towards an individual, a group, or
other entities (subtask C). The proposed ap-
proach includes character-level Convolutional
Neural Network, word-level Recurrent Neural
Network, and some preprocessing. The per-
formance achieved by the proposed model for
subtask A is 77.93% macro-averaged F1-score.

1 Introduction

The massive rise in user-generated web content,
alongside with the freedom of speech in social me-
dia and anonymity of the users has brought about
an increase in online offensive content and anti-
social behavior. The consequences of such behav-
ior on genuine users of the social media have be-
come a serious concern for researchers in Natural
Language Processing and related fields in recent
years.

The shared task number 6 at SemEval 2019,
OffensEval (Zampieri et al., 2019b), proposes to
model the task of offensive language identification
hierarchically, which means identifying the offen-
sive content, whether it is targeted, and if so, the
target of the offense. In OffensEval, offensive lan-
guage is defined as “any form of non-acceptable
language (profanity) or a targeted offense, which
can be veiled or direct” which includes “insults,
threats, and posts containing profane language or
swear words” (Zampieri et al., 2019b).

We have participated in the first two subtasks (A
and B) of OffensEval with the proposed approach
of a deep model consisting of a Recurrent Neural
Network (RNN) for word-level and Convolutional

Neural Network (CNN) for character-level pro-
cessing1. Character-level processing is beneficial,
as offensive comments are likely to follow un-
orthodox writing styles, contain obfuscated words,
or have irregular word separation which leads to
tokenization issues (Mehdad and Tetreault, 2016;
Nobata et al., 2016). We also experimented with
two other methods, a Support Vector Machine
(SVM) with TFIDF and count features and another
SVM with BERT (Devlin et al., 2018) -encoded
sentences as input, both with lower performances
comparing with the deep model.

After overviewing the related work in section 2,
we discuss the methodology and the data in details
in section 3, and the results in section 4. In section
5, we analyze the results and conclude the paper
in section 6.

2 Related Work

Offensive language identification has been of in-
terest for researchers in recent years. Early work
in the related fields include detection of online
trolling (Cambria et al., 2010), racism (Greevy and
Smeaton, 2004), and cyberbullying (Dinakar et al.,
2012).

Papers published in recent years include
(Davidson et al., 2017), which introduces the Hate
Speech Detection dataset and experiments with
different machine learning models, such as logistic
regression, naı̈ve Bayes, random forests, and lin-
ear SVMs to investigate hate speech and offensive
language, (Malmasi and Zampieri, 2017) which
experiments further on the same dataset using
SVMs with n-grams and skip-grams features, and
(Gambäck and Sikdar, 2017) and (Zhang et al.,
2018), both exploring the performance of neural
networks and comparing them with other machine

1You can find the code of the deep model on this project’s
repository on github: github.com/edoost/offenseval

https://github.com/edoost/offenseval

618

learning approaches. Also, there has been pub-
lished a couple of surveys covering various work
addressing the identification of abusive, toxic, and
offensive language, hate speech, etc., and their
methodology including (Schmidt and Wiegand,
2017) and (Fortuna and Nunes, 2018).

Additionally, there were several workshops and
shared tasks on offensive language identification
and related problems, including TA-COS2, Abu-
sive Language Online3, and TRAC4(Kumar et al.,
2018), and GermEval (Wiegand et al., 2018),
which shows the significance of the problem.

3 Methodology and Data

The methodology used for both subtask A, offen-
sive language identification, and subtask B, au-
tomatic categorization of offense types, consists
of a preprocessing phase and a deep classification
phase. We first introduce the preprocessing phase,
then elaborate on the classification phase.

3.1 Preprocessing

The preprocessing phase consists of (1) replacing
obfuscated offensive words with their correct form
and (2) tweet tokenization using NLTK tweet tok-
enizer (Bird et al., 2009). In social media, some
words are distorted in a way to escape the of-
fense detection systems or to reduce the imperti-
nence. For instance, ‘asshole’ may be written as
‘a$$hole’, ‘a$sh0le’, ‘a**hole’, etc. Having a list
of English offensive words, we can create a list
containing most of the possible permutations. Us-
ing such a list will ease the job for the classifier
and searching in it is computationally cheap. Fur-
thermore, replacing contractions, e.g. ‘I’m’ with ‘I
am’, and replacing common social media abbrevi-
ations, e.g. ‘w/’ with ‘with’, were not helpful and
were not used to train the final model.

3.2 Deep Classifier

Given a tweet, we want to know if its offensive or
not (subtask A), and if the offense is targeted (sub-
task B). Regarding that both subtasks are problems
of binary classification, we used one architecture
to tackle both. To define the problem, if we have
a tweet x, we want to predict the label y, OFF or
NOT in subtask A, and TIN or UNT in subtask

2http://ta-cos.org/
3https://sites.google.com/site/

abusivelanguageworkshop2017/
4https://sites.google.com/view/trac1/

home

B. Two representations are therefore created for
each input x:

1. xc which is the indexed representation of
the tweet based on its characters padded to
the length of the longest word in the corpus.
The indices include 256 of the most common
characters, plus 0 for padding and 1 for un-
known characters.

2. xw which is the embeddings of the words
in the input tweet based on FastText’s 600B-
token common crawl model (Mikolov et al.,
2018).

Then, xc is fed into an embedding layer with
output size of 32 and a CNN layer after that. xc
is then concatenated with xw and both are fed to
a unidirectional RNN with LSTM cell of size 256,
the output of which is the input to two consecu-
tive fully-connected layers that map their input to
an R128 and an R2 space, respectively. We also ap-
plied dropout of keeping rate 0.5 on CNN’s output,
xw, RNN’s output, and the first fully-connected
layer’s output.

The CNN layer consists of four consecutive
sub-layers:

1. CNN consisting of 64 filters with kernel size
of 2, stride of 1, same padding and RELU ac-
tivation;

2. max-pooling layer with pool size and stride
of 2;

3. another CNN, same as the first one, but with
128 filters;

4. the same max-pooling again.

Finally, we used an AdamOptimizer (Kingma
and Ba, 2014) with learning rate of 1e−3 and
batch size of 32 to train the model.

3.3 Baseline Methods
We used two baseline methods for subtask A:

• an SVM with 1- to 3-gram word TFIDF and
1- to 5-gram character count feutrue vectors
as input;

• an SVM with BERT representations of the
tweets (using average pooling (Xiao, 2018))
as input using BERT-Large, Uncased
model.

http://ta-cos.org/
https://sites.google.com/site/abusivelanguageworkshop2017/
https://sites.google.com/site/abusivelanguageworkshop2017/
https://sites.google.com/view/trac1/home
https://sites.google.com/view/trac1/home

619

The SVMs were trained for 15 epochs
with stochastic gradient descent, hinge loss,
alpha of 1e−6, elasticnet penalty, and
random state of 5. The SVMs were imple-
mented using Scikit-learn (Pedregosa et al., 2011).

3.4 Data

The main dataset used to train the model is Of-
fensive Language Identification Dataset (OLID)
Zampieri et al. (2019a). The dataset is annotated
hierarchically to identify offensive language (OF-
Fensive or NOT), whether it is targeted (Targeted
INsult or UNTargeted), and if so, its target (INDi-
vidual, GRouP, or OTHer). We divided the 13,240
samples in the training set into 12,000 samples for
training and 1,240 samples for validation.

As neural networks require huge amount of
training data, we tried adding more data from the
dataset of the First Workshop on Trolling, Aggres-
sion, and Cyberbullying (TRAC-1) (Kumar et al.,
2018) which was not helpful. However, adding
the training data from Toxic Comment Classifica-
tion Challenge on Kaggle (Conversation AI, 2017)
increased the macro-averaged F1-score on the val-
idation set by ∼ 2%. This data comprises tweets
with positive and negative tags in six categories:
toxic, severe toxic, obscene, threat,
insult, identity hate. We only used
toxic and severe toxic positive samples
as OFF and the ones with no positive label in any
category as NOT. None of the data from other cat-
egories, either positive or negative, were included
in the additional training data. After that, we were
left with 109,236 samples, most of which were la-
beled as NOT. To balance OFF and NOT samples,
84,626 of NOT samples were randomly removed.
In the end, 12,305 OFF and 12,305 NOT samples
were added to the training data.

4 Results

Finally, we trained the baseline models in 3.3 and
the model described in 3.2 using the combination
of the OLID training data and the data from Toxic
Comment Classification Challenge (which is de-
scribed in 3.4).

You can see the macro-averaged F1-score and
accuracy on the test set for the baseline scores
provided by task organizers, baseline methods we
used (on both training and validation data), and
the deep classifier model (DeepModel) in table 1.
DeepModel is trained on the training data (not in-

cluding the validation data) and DeepModel+val
on the combination of the training and validation
data. The best performance is in bold.

System Macro F1 Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
SVM 0.7452 0.8011
BERT-SVM 0.7507 0.8011
DeepModel 0.7788 0.8326
DeepModel+val 0.7793 0.8337

Table 1: Results for subtask A

The best performance belongs to Deep-
Model+val by a margin of more than 2.8 percent,
with the best baseline performance, BERT-SVM.
However, it should be mentioned that the results in
the first two rows belong to a model trained only
on OLID. You can see the confusion matrix for the
best performance in figure 1.

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

572 48

95 145

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 1: The confusion matrix for DeepModel+val in
subtask A

From the confusion matrix we can see that the
performance of DeepModel+val on NOT is quite
good, but not on OFF. You can see the detailed
results of DeepModel+val in table 2.

Precision Recall F1-score
NOT 0.8576 0.9226 0.8889
OFF 0.7513 0.6042 0.6697

Table 2: Detailed DeepModel+val results in subtask A

In subtask B, DeepModel+val outperformed the

620

baseline results by a large margin, like subtask A.
The results for subtask B are presented in table 3.

System Macro F1 Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
DeepModel 0.6065 0.8583
DeepModel+val 0.6400 0.8875

Table 3: Results for subtask B

This time, adding the validation data made a
considerable difference, as the training data for
subtask B is fewer. You can see the confusion ma-
trix for DeepModel+val in figure 2.

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

206 7

20 7

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: The confusion matrix for the DeepModel+val
in subtask B

The confusion matrix shows that the perfor-
mance of the model is good for TIN, but poor for
UNT. Table 4 shows the detailed results for Deep-
Model+val in subtask B, which indicates that the
imbalance is worse than subtask A and the poor
performance on UNT is mainly due to low recall.

Precision Recall F1-score
TIN 0.9115 0.9671 0.9385
UNT 0.5000 0.2593 0.3415

Table 4: Detailed DeepModel+val results in subtask B

5 Analysis

In subtask A, DeepModel+val outperformed the
second best method, BERT-SVM, by 2.86%
Macro F1-score. BERT-SVM results, however,

were not much better than the SVM with TFIDF
and count features, probably due the fact that the
BERT model requires fine-tuning for more task-
specific representations.

The majority of DeepModel+val’s errors are in
OFF class and can be categorized into (1) sar-
casm: the model is unable to detect sarcastic lan-
guage which is even difficult for humans to detect;
(2) emotion: discerning emotions, such as anger,
seems to be a challenge for the model; (3) eth-
nic and racial slurs, etc. Solving these problems
require a more comprehensive knowledge of the
context and the language, which was examined in
works such as (Poria et al., 2016) and improved
the results. However, experimenting with emotion
embeddings in the current work was not helpful
and did not appear in the final results. Being aware
of the emotion of the text, personality of the au-
thor, and sentiment of the sentences is helpful to
detect offensive language, as many offensive con-
tents have an angry tone (ElSherief et al., 2018)
or do not contain profane language (Malmasi and
Zampieri, 2018). One can also make use of the
benefits of BERT’s context and sentence sequence
awareness by fine-tuning it on the training data,
which is computationally expensive and was not
feasible for the authors of this paper.

6 Conclusion

In this paper, we introduced Ghmerti team’s ap-
proach to the problems of ‘offensive language
identification’ and ‘automatic categorization of of-
fense type’ in shared task 6 of SemEval 2019, Of-
fensEval. In subtask A, the neural network-based
model outperformed the other methods, including
an SVM with word TFIDF and character count
features and another SVM with BERT-encoded
tweets as input. Furthermore, analysis of the re-
sults indicates that sarcastic language, inability to
discern the emotions such as anger, and ethnic and
racial slurs constitute a considerable portion of the
errors. Such deficiencies demand larger training
corpora and variety of other features, such as in-
formation on sarcasm, emotion, personality, etc.

References

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

621

Erik Cambria, Praphul Chandra, Avinash Sharma, and
Amir Hussain. 2010. Do not feel the trolls. ISWC,
Shanghai.

Conversation AI. 2017. Toxic comment classification
challenge: Identify and classify toxic online com-
ments.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Karthik Dinakar, Birago Jones, Catherine Havasi,
Henry Lieberman, and Rosalind Picard. 2012. Com-
mon sense reasoning for detection, prevention, and
mitigation of cyberbullying. ACM Transactions on
Interactive Intelligent Systems (TiiS), 2(3):18.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Edel Greevy and Alan F Smeaton. 2004. Classifying
racist texts using a support vector machine. In Pro-
ceedings of the 27th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 468–469. ACM.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Yashar Mehdad and Joel Tetreault. 2016. Do charac-
ters abuse more than words? In Proceedings of the
17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 299–303.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive
Language Detection in Online User Content. In
Proceedings of the 25th International Conference
on World Wide Web, pages 145–153. International
World Wide Web Conferences Steering Committee.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
and Prateek Vij. 2016. A deeper look into sarcas-
tic tweets using deep convolutional neural networks.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 1601–1612.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Han Xiao. 2018. bert-as-service. https://
github.com/hanxiao/bert-as-service.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://github.com/hanxiao/bert-as-service
https://github.com/hanxiao/bert-as-service

