
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 484–488
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

484

sthruggle at SemEval-2019 Task 5: An Ensemble Approach to Hate
Speech Detection

Aria Nourbakhsh, Frida Vermeer, Gijs Wiltvank, Rob van der Goot
University of Groningen

Groningen, the Netherlands
{a.nourbakhsh, f.h.vermeer, g.g.wiltvank}@student.rug.nl

r.van.der.goot@rug.nl

Abstract

In this paper, we present our approach to de-
tection of hate speech against women and im-
migrants in tweets for our participation in the
SemEval-2019 Task 5. We trained an SVM
and an RF classifier using character bi- and
trigram features and a BiLSTM pre-initialized
with external word embeddings. We combined
the predictions of the SVM, RF and BiLSTM
in two different ensemble models. The first
was a majority vote of the binary values, and
the second used the average of the confidence
scores. For development, we got the highest
accuracy (75%) by the final ensemble model
with majority voting. For testing, all models
scored substantially lower and the scores be-
tween the classifiers varied more. We believe
that these large differences between the higher
accuracies in the development phase and the
lower accuracies we obtained in the testing
phase have partly to do with differences be-
tween the training, development and testing
data.

1 Introduction

An unwanted phenomenon that can be found
across social media, is the publication of texts with
hateful content. In SemEval-2019 Task 5 (Basile
et al., 2019), it is defined as any communication
that disparages a person or group. We focused on
immigrants and women, which are two of the most
targeted groups of people who are victims to this
kind of discourse.

The micro-blogging service Twitter is a medium
on which posts containing hateful content can be
found in abundance. In order to filter out tweets
with such content, machine learning and neural
network techniques can be used to discriminate
tweets which do contain hate speech from tweets
which do not. Among the characteristics of Twit-
ter data we can point out its noisiness and the use

of emojis and hashtags, which can be taken into
account for the classification task.

In this paper, we tried to solve this problem
for English, by incorporating a variety of classi-
fication algorithms including Support Vector Ma-
chine (SVM), Random Forest (RF), and Bidirec-
tional Long Short-Term Memory (BiLSTM). For
the classical machine learning classification algo-
rithms (SVM and RF) we used character n-grams
and for the BiLSTM we used word embeddings
trained on a huge amount of Twitter data. By com-
bining these three models into an ensemble learn-
ing model, we achieved our best results on the de-
velopment data, so we submitted this model for
this shared task.

We start the paper by discussing some earlier
work done in this field. Then, we describe the
dataset we used for this task. In chapter 4, we
present our approach. In chapter 5, we continue
with the results of our methods and the discussion.
Finally, we end with a conclusion and future work
in chapter 7.

2 Related work

There has been done a lot of research regarding
the automatic detection of hate speech on social
media, in particular Twitter. A great deal of differ-
ent approaches to solve this task had been imple-
mented in different works. The majority of these
studies was done on English texts. It is clear that
there is quite some overlap between each of these
approaches. However, direct comparison of previ-
ous approaches is not straightforward, as different
datasets were used.

Most papers tried one or multiple different clas-
sifiers, albeit with different features, but in general
SVM classifiers usually achieve the best perfor-
mance (Saleem et al., 2016; Davidson et al., 2017).

Some papers divided the ‘hate’ class into two



485

classes. For example, Watanabe et al. (2018) and
Davidson et al. (2017) used the classes ‘offensive’
and ‘hate’, and Del Vigna et al. (2017) classified
comments as ‘weak hate’ and ‘strong hate’.

Both the j48graft algorithm in Watanabe et al.
(2018), and the SVM and LSTM in Del Vigna
et al. (2017) performed better on a binary clas-
sification rather than a multiclass classification.
Davidson et al. (2017) also tried different classi-
fiers including Naive Bayes, decision trees, SVM
and logistic regression. Their logistic regression
and SVM classifiers achieved the best results.
Waseem and Hovy (2016) tried different features
for a logistic regression classifier, among which
the character n-grams up to length of four in com-
bination with the user’s gender information per-
formed the best.

Other approaches are based on neural networks,
like Zhang and Luo (2018). Their base convolu-
tional neural network with a gap window (skipped
CNN) had higher results than their SVM.

3 Data

The data provided by the organizers were collected
from Twitter and manually annotated via the Fig-
ure Eight1 crowdsourcing platform. All tweets
contain a numeric ID, text of the tweet, and three
labels with binary values (0 or 1). The first la-
bel indicates whether it is hate speech or not, the
second if the target is a generic group of people
or a specific individual and the third whether the
tweeter is aggressive or not. The second and third
labels can only be 1 if the first tag (hate speech or
not) is 1 as well. However, we only used the first
tag, since we only participated in task A, which is
detecting hate speech.

The dataset for English contains 9,000 tweets
for training, 1,000 for development and 3,000 for
testing. Some tweets in the testing dataset were
duplicates and removed from the dataset, result-
ing in 2,971 tweets. For each dataset, 57% of the
tweets was labeled as non-hate speech and the rest
as hate speech. For the testing phase, both training
and development data were used for training the
models.

1https://www.figure-eight.com/
platform/

4 Method

4.1 Preprocessing
Before training the classifiers, we did some pre-
processing steps over the data.

One of the reasons we did these preprocessing
steps was that many words were not available in
our word embeddings for the BiLSTM. Also, we
could reduce the dimensionality of the character
n-gram features for the RF and SVM by the fol-
lowing deletions and changes:

• Lower casing text

• Removing usernames

• Removing punctuation (except ‘#’)

• Replacing each URL by ‘URL’

• Replacing each number by ‘0’

Tokenization was done based on whitespace, as
tokenization on tweets is non-trivial and wrong to-
kenization might actually hurt performance.

4.2 Models
Different machine learning models were evalu-
ated and compared, among which Naive Bayes, k-
nearest neighbours, RF, SVM, bagging and boost-
ing models, and BiLSTM. Out of these models,
the SVM, RF and BiLSTM proved to perform the
best. The SVM and RF were implemented us-
ing Python’s scikit-learn library (Pedregosa et al.,
2011) and the BiLSTM was implemented using
Python’s Keras2 library.

Finally, these models were combined in a ma-
jority voting ensemble model. The models are ex-
plained in more detail in the next sections, as well
as the baseline models.

The architecture of our approach is shown in
figure 1.

Figure 1: Architecture of our final approach.

2http://keras.io/

https://www.figure-eight.com/platform/
https://www.figure-eight.com/platform/
http://keras.io/


486

4.2.1 Baseline
We compared our results to two different baselines
provided by the shared task organizers: a linear
SVM with default parameters based on a tf-idf rep-
resentation, and a classifier which assigns the most
frequent label in the training set (MFC).

4.2.2 SVM
For the SVM, we tried different types of n-grams
as features, including character and word n-grams.
In the development phase, the combination of
character bi- and trigrams gave the best results.
These bi- and trigrams were represented as a tf-idf
vector as input for the classifier.

During development, we also fine tuned the hy-
perparameters of the SVM classifier. The parame-
ter values we changed for the final model were:

• C = 100

• kernel = ‘linear’

• probability = True

4.2.3 RF
Just like the SVM classifier, we tried several dif-
ferent features during training for the RF, and
again, the character level bi- and trigrams per-
formed the best.

While developing, we fine tuned the parameters
of the RF classifier. We experimented with differ-
ent values and ratios for the number of trees and
the maximum depth of the trees. Finally, we found
that the following combination of parameter val-
ues led to the best performance:

• number of trees = 100

• max tree depth = 49

4.2.4 BiLSTM
In the recent years, neural network algorithms
and its variants, proved to give excellent results
for many NLP tasks including classification prob-
lems. Considering this, we tried a BiLSTM clas-
sifier and we used word embeddings taken from
van der Goot and van Noord (2017) that were
specifically trained on Twitter data. The em-
beddings were trained with Google’s word2vec3

(Mikolov et al., 2013) tool with 100 dimensions.
In the process of training the model, we updated
the initial values. The words that were not in the
word embeddings were assigned values of 0 for

3https://code.google.com/archive/p/
word2vec/

their vector. Moreover, 6,515 words of all 26,026
unique tokens in the dataset (including the test
set) were not included in the word embeddings.
Among these words one can find unusual hashtags
with CamelCasing (e.g. #SendAllIllegalsHome),
use of repeated emojis and uncanonical usage of
words of which some of them can be related to
spelling errors.

Finally, we trained the model using a 3 layer
BiLSTM model ran with 8 epochs and the follow-
ing settings:

• 50 hidden units

• batch size = 300

• adam optimizer

• dropout rate = 0.2

4.2.5 Ensemble model
The predictions of the RF, SVM and BiLSTM
were used in an ensemble model. For each final
prediction, the majority vote (MV) of these pre-
dictions was taken. This means that the prediction
(0 or 1) with the most votes is chosen as final pre-
diction.

In addition to the previously described MV en-
semble model, another one was made which uses
the confidence scores of the SVM and RF, indi-
cating the chance of being a 0 or 1. Finally, the
average of these confidence values and the binary
value of the BiLSTM was used to determine the
final prediction.

5 Results and Discussion

Table 1 shows the accuracy, precision, recall and
F-score for task A (hate speech detection) of the
MFC, SVM (baseline), RF, SVM (character n-
grams) and BiLSTM separately, as well as the final
MV ensemble models and our official results. The
official results differ from the other MV because
after submission we did small changes in prepro-
cessing and aggregated the development and train-
ing data for training the models.

57.3% of the data in each of the datasets (train-
ing, development and testing), was annotated as
non-hate speech. Therefore, the accuracy of the
MFC baseline was 57.3% as well. However, only
one of the participants in this shared task managed
to beat this baseline.

The accuracies and F-scores were substantially
lower on the testing data than on the development
data and the scores between the classifiers varied

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/


487

Table 1: Evaluation measures (in percentage) of all models for development and testing on task A (hate speech
detection). Precision and recall are averaged over the two classes.

Development Testing
Model Accuracy Precision Recall F-score Accuracy Precision Recall F-score
MFC baseline* 57.2 32.8 57.3 41.7 57.9 28.9 50.0 36.7
SVM baseline* 72.0 71.9 72.1 71.9 49.2 59.5 54.9 45.1
RF 73.6 73.8 73.6 72.9 42.7 50.0 42.7 29.9
SVM (char. n-grams) 74.0 73.9 74.0 73.9 47.0 63.3 47.0 37.3
BiLSTM 72.2 72.6 72.2 72.3 49.7 65.1 49.7 42.5
Ensemble (MV) 75.4 75.3 75.4 75.2 45.6 64.2 45.6 33.7
Ensemble (MV conf. scores) 74.0 74.2 74.0 74.1 48.2 65.8 48.2 39.2
Submitted ensemble (MV) - - - - 46.0 58.1 52.6 39.2

*The baselines for development are re-implemented, so they could be differently compared to the organizer’s baseline.

more. This phenomenon can be explained by the
fact that the testing data differed a lot from the
training data. The organizers stated that before
splitting the entire dataset, the data were not shuf-
fled, which can be an explanation for these differ-
ences. These differences between the training and
test data can lead to overfitting during training and
parameter optimization.

During the development phase, character n-
grams were the best features for the SVM, but in
the testing phase it scored lower than the base-
line SVM with a tf-idf representation of word un-
igrams. Furthermore, the MV ensemble model,
combining the binary predictions of the three clas-
sifiers, got the highest scores on the development
set. As a result, we submitted this MV ensemble
model, without confidence scores. In contrast to
the development phase, both ensemble models did
not perform better on the testing data than the BiL-
STM model alone. The BiLSTM performed the
best (50% accuracy and 43% F-score) on the test
data, but still below the baseline. Furthermore, all
models had a higher precision than recall for test-
ing, which also can be attributed to the imbalanced
distribution of the data.

Finally, there were some issues with the annota-
tion of the training and testing data. One could find
instances of tweets that contain hate speech but
were annotated incorrectly in our opinion. More-
over, as it was stated before, only one of the par-
ticipants outperformed the MFC baseline.

6 Conclusion and future work

For the task of hate speech detection, we incorpo-
rated a variety of classifiers (SVM, RF and BiL-
STM) and experimented with a range of different
features and parameters. At the end we combined
the predictions of these models in ensemble mod-

els. For development, the SVM, RF and BiLSTM
reached similar performances and the ensemble
model performed slightly better than these models
individually. However, all models scored substan-
tially lower on the test data than on the develop-
ment data. As a result, we think that our approach
led to overfitting on the development set without
being able to generalize on the test set.

For future work, there are some ways to im-
prove the results besides experimenting with dif-
ferent classification algorithms. Firstly, Twitter
data is noisy and there are many uncanonical
words and emojis. We tried to tackle this prob-
lem by using word embeddings that were trained
on Twitter data for the BiLSTM and character n-
grams for the RF and SVM. Another strategy to
try is to normalize the data into a more canonical
form and feed it to the classifiers. Furthermore,
more experiments could be done by incorporating
different features and exploiting other information
that is available in the data. For example, RF and
SVM classifiers trained on word embeddings and
the use of certain punctuation marks, emojis and
hashtags as separate features could be tried.

Finally, as it was stated in the previous section,
we believe there were some issues with the dataset.
Moreover, hate speech is hard to define and there
is no clear agreement on the definition. This is
why we can be skeptical about the annotation pro-
cedure. Therefore, we believe better datasets are
necessary for the hate speech detection task.

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-

ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-



488

ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Thomas Davidson, Dana Warmsley, Michael W. Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language. In
ICWSM, pages 512–515.

Fabio Del Vigna, Andrea Cimino, Felice DellOrletta,
Marinella Petrocchi, and Maurizio Tesconi. 2017.
Hate me, hate me not: Hate speech detection on
facebook. In Proceedings of the First Italian Con-
ference on Cybersecurity, pages 86–95.

Rob van der Goot and Gertjan van Noord. 2017.
MoNoise: Modeling noise using a modular normal-
ization system. Computational Linguistics in the
Netherlands Journal, 7:129–144.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. Proceedings of Workshop at
ICLR.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Haji Mohammad Saleem, Kelly P. Dillon, Susan Be-
nesch, and Derek Ruths. 2016. A web of hate: Tack-
ling hateful speech in online social spaces. Proceed-
ings of the 1st Workshop on Text Analytics for Cyber-
security and Online Safety.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

Hajime Watanabe, Mondher Bouazizi, and Tomoaki
Ohtsuki. 2018. Hate speech on twitter: A pragmatic
approach to collect hateful and offensive expressions
and perform hate speech detection. IEEE Access,
6:13825–13835.

Ziqi Zhang and Lei Luo. 2018. Hate speech detection:
A solved problem? the challenging case of long tail
on twitter. CoRR, abs/1803.03662.


