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Abstract

Sentiment analysis (SA) in texts is a well-
studied Natural Language Processing task,
which in nowadays gains popularity due to
the explosion of social media, and the subse-
quent accumulation of huge amounts of related
data. However, capturing emotional states
and the sentiment polarity of written excerpts
requires knowledge on the events triggering
them. Towards this goal, we present a compu-
tational end-to-end context-aware SA method-
ology, which was competed in the context of
the SemEval-2019 / EmoContext task (Task 3).
The proposed system is founded on the com-
bination of two neural architectures, a deep
recurrent neural network, structured by an at-
tentive Bidirectional LSTM, and a deep dense
network (DNN). The system achieved 0.745
micro f1-score, and ranked 26/165 (top 20%)
teams among the official task submissions.

1 Introduction and Related Work

One of the most challenging fields of Natural Lan-
guage Processing (NLP) and Computational Lin-
guistics is Sentiment Analysis (SA) that aims to-
wards the automated extraction of a writer’s sen-
timent or emotion as conveyed in text excerpts
(Liu, 2015). Relevant efforts focus on tracking the
sentiment polarity of single utterances, which in
most of the cases is loaded with a lot of subjec-
tivity and a degree of vagueness (Thelwall et al.,
2010). Contemporary research in the field uti-
lizes data from social media resources (e.g., Face-
book, Twitter) as well as other short text refer-
ences. However, users of social media tend to vi-
olate common grammar and vocabulary rules and
even use various figurative language forms to com-
municate their message. In such situations, the
sentiment polarity underlying the literal content
of the conveyed concept may significantly differ
from its figurative context, making SA tasks even

more puzzling (Patra et al., 2016). Evidently, sin-
gle turn text lacks in detecting sentiment polar-
ity on sarcastic and ironic expressions (Potamias
et al., 2019), as already indicatd in the relevant
SemEval-2014 Task-9 Sentiment Analysis in Twit-
ter (Sara et al., 2014). As sentiment reflects the
emotion behind customer engagement, SA finds
its realization in automated customer aware ser-
vices (Kurniawati et al., 2013). A lot of research
has already been devoted on capturing the senti-
ment polarity of contextual conversations of vari-
ous utterances. Most of the relevant studies utilize
single turn texts from topic related sources (e.g.,
Twitter). Hand-crafted and sentiment-oriented
features, indicative of emotion polarity, are uti-
lized to represent respective excerpt cases. The
formed data were used as input to various tra-
ditional machine learning classifiers (e.g. SVM,
Random Forests etc.) or deep learning architec-
tures (e.g. recurrent neural networks, CNNs) in
order to induce analytical models that are able to
capture the underlying sentiment content of pas-
sages (Singh et al., 2018; Jianqiang et al., 2018;
Hangya and Farkas, 2017).

The work presented in this study considers the
recognition of the three fundamental emotions,
Happy, Sad and Angry, specified in the SemEval-
2019 / EmoContext task (Task 3), as a context
sensitive task. In order to capture emotional cate-
gories, we settled two-layered bidirectional LSTM
units that share weights over three embedded ut-
terances resembling a siamese like architecture
(Mueller and Thyagarajan, 2016). Pretrained word
embeddings were utilized, Standford GloVe (Pen-
nington et al., 2014), in order to represent sin-
gle turn text input, resulting into an attentive and
context-aware model. We also extended word
embeddings with appropriate handling of emojis,
utilizing the pretrained emoji2vec vectors (Eisner
et al., 2016), and sentiment lexicons, NCR and De-
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pecheMood (Mohammad and Turney, 2013), re-
sulting into an enhanced representation of single
turn text cases. The overall complex presents a
combined neural architecture to serve SA tasks.

2 Experimental Setup: Data &
Preprocessing

The SemEval-2019 / EmoContext shared task
(Task 3) targets the emotion classification of user
utterances in three classes, namely Happy, Sad,
Angry and Other (Chatterjee et al., 2019). It pro-
vides a 33K training textual dialogue dataset in the
form of three contextual turns. The distribution
of data demands the elaboration of techniques that
are able to cope with class imbalances in order to
capture correctly the less frequent emotions, i.e.,
Happy, Sad and Angry (13%, 17%, 17% and 53%
for Happy, Sad, Angry and Other, respectively).
To handle imbalance among classes we applied a
penalty weight to the loss function, proportional to
the respective class frequencies.

Given that the provided data do not contain any
Twitter-specific informative sign, such as hashtags
and user mentions, we tried to keep the prepro-
cessing step as simple as possible. Thus, we re-
placed repeated emojis and punctuation with sin-
gle ones, and substituted slang abbreviations to
their full expression (e.g. “bcz” is substituted by
“because”).

3 System Overview

The proposed emotion analysis methodology is
composed by (i) the formulation of the suitable
representation schemes for the input data, and (ii)
the implementation of an elaborative deep neural
network architecture to map these schemes to their
associated labels and the appropriate neural layers.

3.1 Embedding Layer

Word Embeddings tend to become a necessary
component of deep learning approaches, with the
mapping of single dimensional words to their
dense vector encodings to be a critical part of the
job (Mikolov et al., 2013). Vector representations
are exhaustively trained on large corpora to cap-
ture the semantic content of each word. One of the
most utilized vector representation is offered by
Standford GloVe pretrained word vectors. How-
ever, GloVe vectors do not handle one of the most
important factors in sentiment analysis, the emo-
jis. To expand their capabilities, we append GloVe

embeddings with pretrained emoji2vec, as pro-
posed by Eisner et al. (2016). In addition, we uti-
lized 23 extra features to enhance our pretrained
word embeddings. Specifically, we elaborated
13 mood-oriented emotions, provided by the De-
pecheMood lexicon, as proposed by Staiano and
Guerini (2014), in order to capture words mood
intentions, as well as 10 NRC emotion relation
scores. The utility of emotion scores is manifested
in various studies (Mohammad and Turney, 2013;
Kiritchenko et al., 2014). The enhancement led
to a dense 323 dimensions vector representation
for each word (300d-GloVe + 13d-DepecheMood
emotions + 10d-NRC sentiment scores), which
after re-normalization fed a recurrent neural net-
work.

3.2 Bidirectional LSTMs and Siamese
Network Architecture

In the recent years, deep learning models and in
particular convolutional neural network (CNN) ar-
chitectures, have become a popular and a favor-
able choice for several artificial intelligence tasks.
However, the recurrent nature of textual data im-
plies the need for architectures that are able to cap-
ture data of sequential nature information, which
CNNs are unable to manage. To cope with the re-
current nature of textual data as well as with the
sentiment contradictions that may occur in both
text directions we utilize a bidirectional LSTM
network architecture. In particular, we used three
bidirectional LSTMs (Hochreiter and Schmidhu-
ber, 1997) in a siamese like architecture (Bromley
et al., 1994) in order to map all turns into the same
vector space (Figure 1). To determine the senti-
ment impact of the last utterance, given the previ-
ous two, we introduce bidirectional LSTM hidden
states, for each time-step and utterance. The hid-
den states are calculated using the same weights
for each input.

3.3 Attention layer

To focus on the most significant time-sample, an
attention layer (Bahdanau et al., 2014) is added on
top of the regular LSTMs in order to capture and
assign an importance attention factor to the hidden
states, forming the so-called attentive vector ~s:

rt = tanh(Whht + bt) (1)

at =
ert∑T
j=0 e

rt
,

n∑
t=1

at = 1 (2)
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Figure 1: Siamese alike architecture, containing two layers of bidirectional LSTMs.

~s =
T∑
t=0

atht (3)

where Wh and bt are the LSTM model weights, to
be optimized during training.

3.4 Dense network

To unfold and map the devised feature set we im-
plemented a four-layered deep dense neural net-
work, equiped with unigram and bigram Tf-idf
weights of each utterance. Each neuron is acti-
vated by a ReLu function, and the final layer is
concatenated with the attentive vector as defined
in sub-section 3.3.

3.5 Proposed method

As already mentioned, we utilize two different
and combined schemes to represent and train pro-
cessed data, (i) an embedded matrix that feeds
the Embeddings layer (as described in sub-section
3.1), and (ii) a uni/bi-gram Tf-idf training schema
to be processed by the a layered dense DNN. In
addition, the Embedding layer is connected with
a siamese like bidirectional LSTM architecture,
containing 164 units each. As shown in Figure
2, on top of the shared weighted LSTMs we add
another bidirectional LSTM layer, also containing
164 units. To boost LSTM performance, we apply
an attention mechanism on top of it, concluding to
an attentive vector, as described in sub-section 3.3.
We will refer to this subnetwork as S-LSTM, which
includes the siamese like layers extended with an
attentive mechanism. The Tf-idf features, as ex-
tracted for each conversation turn, are mapped
onto two-layered dense neural networks contain-
ing 84 neurons each, with a ReLu non-linear acti-
vation function. The output of these layers is then

concatenated and followed by another dense 84-
neuron layer, creating a vector ~d. We refer to this
dense sub-network as F-DNN. The output vectors,
~s and ~d, from the respective S-LSTM and F-DNN
sub-networks are then concatenated and feed a fi-
nal softmax activated dense network. The whole
setup presents a combination of different and het-
erogeneous deep learning models.

3.6 Training
To train our model we adopted several regulariza-
tion techniques to prevent overfitting. Therefore,
we applied Dropout (Srivastava et al., 2014) to
randomly deactivate neurons during forward train-
ing pass. We empirically set dropout parameters
to 0.3 for every model layer, as well as recurrent
connections of LSTM units (Gal and Ghahramani,
2016). In addition, we utilized L2 regularization
penalty loss function to every LSTM unit exceed-
ing weight limits. Finally, we apply early-stopping
technique to terminate training when loss on the
development phase stop decreasing. To optimize
our network we adopted Adam optimizer (Kingma
and Ba, 2014) using cross entropy loss.

4 Results

Our proposed system achieved a micro f1-score
(f1µ) of 0.743, ranked the 26th in the SemEval
2019 EmoContext task. Results are presented in
Table 1 and compared with different approaches.
EmoContext organisers proposed a baseline clas-
sifier (referred as Baseline) that exhibits a f1-score
of 0.587(Chatterjee et al., 2019). In Table 1, we
compare the proposed method with the S-LSTM
and F-DNN implementations, described in 3.4 and
3.5, respectively. Moreover, we present results
for the SS-BED system, proposed by Gupta et al.
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Figure 2: Proposed Method. the left model (S-LSTM) is composed by two LSTM layers followed by an atten-
tive mechanism; the right model (F-DNN) is composed by two dense layers for each utterance followed by two
additional dense layers

(2017). Compared with the other approaches, the
proposed method exhibits a significantly higher
f1-score for the Happy and Angry classes, 0.71
and 0.75, respectively. SS-BED system achieves
a better performance for the Sad class (0.81) but
it exhibits a poor performance for the Happy class
(0.59).

To assess the importance of emoji embeddings
and of the introduced mood and emotion fea-
ture sets which appended GloVe embeddings (G),
we conducted additional experiments retaning the
same siamese neural architecture (S-LSTM). In
each experiment we extended GloVe embeddings
with a respective feature set, i.e., the emoji2vec
embeddings (E), the 13 DepecheMood (D) mood
intensions, and the 10 NRC emotion relations (N).
Compared to the S-LSTMG neural classifier, the
use of additional embedding sets improve slightly
the f1µ performance, with the utilization of the
emoji embeddings to achieve the highest increase
(S-LSTMG+E , from 0.67 to 0.70). But their yield
remains lower compared to the respective archi-
tecture where all embedding sets are utilised (S-
LSTMall, 0.72).

In summary, the results demonstrate the supe-
riority of the proposed method over all other ap-
proaches, and signifies its ability to succeed stable
results over the different sentiment classes.

5 Conclusion

In this study we implemented a combination of
two different representations and respective train-
ing schemes for the input data. First, we extended
pretrained GloVe embedding vectors with emojis

and appended 23 additional emotional features. In
addition, we developed an S-LSTM model, con-
taining a siamese alike bidirectional LSTM archi-
tecture with its output to feed another bidirectional
LSTM layer followed by an attention layer. Fur-
thermore, we transformed input data by their Tf-
idf weight representations in order to feed a dense
deep neural network (F-DNN).

System f1Happy f1Sad f1Angry f1µ
Baseline - - - 0.58
SS-BED 0.59 0.81 0.74 0.71
F-DNN 0.70 0.68 0.73 0.70
S-LSTMall 0.69 0.76 0.71 0.72
S-LSTMG 0.67 0.69 0.65 0.67
S-LSTMG+E 0.65 0.71 0.74 0.70
S-LSTMG+D 0.68 0.68 0.71 0.69
S-LSTMG+N 0.66 0.71 0.68 0.68
Proposed 0.71 0.77 0.75 0.74

Table 1: Comparison results: Proposed method vs.
other approaches (f1µ refer to the f1-micro metric)

All model features are appropriately mapped
and concatenated in order to feed the final dense
softmax layer. Comparative results demonstrate
the superiority of the proposed method over other
approaches and single network models, as well
as its robustness with regard the stability of per-
formance over different emotional classes. Thus
we could state that the proposed methodology de-
fines an end-to-end solution on sentiment analy-
sis and classification tasks, suited for imbalanced
data, with the ability as well, to cope with huge
amounts of data.
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