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Abstract

Semantic proto-role labeling (SPRL) is an
alternative to semantic role labeling (SRL)
that moves beyond a categorical definition of
roles, following Dowty’s feature-based view
of proto-roles. This theory determines agent-
hood vs. patienthood based on a participant’s
instantiation of more or less typical agent vs.
patient properties, such as, for example, voli-
tion in an event. To perform SPRL, we develop
an ensemble of hierarchical models with self-
attention and concurrently learned predicate-
argument-markers. Our method is competitive
with the state-of-the art, overall outperforming
previous work in two formulations of the task
(multi-label and multi-variate Likert scale pre-
diction). In contrast to previous work, our re-
sults do not depend on gold argument heads
derived from supplementary gold tree banks.

1 Introduction

Deciding on a linguistically sound, clearly de-
fined and broadly applicable inventory of seman-
tic roles is a long-standing issue in linguistic the-
ory and natural language processing. To alleviate
issues found with classical thematic role invento-
ries, Dowty (1991) argued for replacing categori-
cal roles with a feature-based, composite notion of
semantic roles, introducing the theory of seman-
tic proto-roles (SPR). At its core, it proposes two
prominent, composite role types: proto-agent and
proto-patient. Proto-roles represent multi-faceted,
possibly graded notions of agenthood or patient-
hood. For example, consider the following sen-
tence from Bram Stoker’s Dracula (1897):

(1) He opened it [the letter] and read it gravely.

‘Davidsonian’ analyses based on SR and SPR
of the event open are displayed in Figure 1. The
SPR analysis provides more detail about the event
and the roles of the involved entities. Whether an

SR: ∃e
[
open(e) ∧ agent(e, c∗) ∧ theme(e, l∗)

]
SPR: ∃e

[
open(e) ∧ volition(e, c∗) ∧ aware(e, c∗) ∧

sentient(e, c∗) ∧ manipulated(e, l∗) ∧ changes-
state(e, l∗) ∧ ...

]
Figure 1: Two different ‘Davidsionian’ event analyses
of open. c∗ and l∗ refer to the count and letter entities.

argument is considered an agent or patient follows
from the proto-typical properties the argument ex-
hibits: e.g., being manipulated is proto-typical for
patient, while volition is proto-typical for an agent.
Hence, in both events of (1) the count is deter-
mined as agent, and the letter as patient.

Only recently two SPR data sets have been
published. Reisinger et al. (2015) developed a
property-based proto-role annotation schema with
18 properties. One Amazon Mechanical Turk
crowd worker (selected in a pilot annotation) an-
swered questions such as how likely is it that the
argument mentioned with the verb changes loca-
tion? on a 5-point Likert or responded inapplica-
ble. This dataset (news domain) will henceforth be
denoted by SPR1. Based on the experiences from
the SPR1 annotation process, White et al. (2016)
published SPR2 which follows a similar annota-
tion schema. However, in contrast to SPR1, the
new data set contains doubly annotated data from
the web domain for 14 refined properties.

Our work makes the following contributions: In
Section §2, we provide an overview of previous
SPRL work and outline a common weakness: re-
liance on gold syntax trees or gold argument heads
derived from them. To alleviate this issue, we pro-
pose a span-based, hierarchical neural model (§3)
which learns marker embeddings to highlight the
predicate-argument structures of events. Our ex-
periments (§4) show that our model, when com-
bined in a simple voter ensemble, outperforms all
previous works. A single model performs only
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slightly worse, albeit having weaker dependencies
than previous methods. In our analysis, we (i) per-
form ablation experiments to analyze the contri-
butions of different model components. (ii) we
observe that the small SPR data size introduces
a severe sensitivity to different random initializa-
tions of our neural model. We find that combining
multiple models in a simple voter ensemble makes
SPRL predictions not only slightly better but also
significantly more robust. We share our code with
the community and make it publicly available.1

2 Related Work

SPRL Teichert et al. (2017) formulate the se-
mantic role labeling task as a multi-label prob-
lem and develop a conditional random field model
(CRF). Given an argument phrase and a corre-
sponding predicate, the model predicts which of
the 18 properties hold. Compared with a sim-
ple feature-based linear model by Reisinger et al.
(2015), the CRF exhibits superior performance by
more than 10 pp. macro F1. Incorporating features
derived from additional gold syntax improves the
CRF performance significantly. For treating the
task as a multi-label problem, the Likert classes
{1, 2, 3} and inapplicable are collapsed to − and
Likert classes {4, 5} are mapped to +. Subsequent
works, including ours, conform to this setup.

Rudinger et al. (2018) are the first to treat SPRL
as a multi-variate Likert scale regression problem.
They develop a neural model whose predictions
have good correlation with the values in the testing
data of both SPR1 and SPR2. In the multi-label
setting, their model compares favourably with Te-
ichert et al. (2017) for most proto-role properties
and establishes a new state-of-the-art. Pre-training
the model in a machine translation setting helps on
SPR1 but results in a performance drop on SPR2.
The model takes a sentence as input to a Bi-LSTM
(Hochreiter and Schmidhuber, 1997) to produce a
sequence of hidden states. The prediction is based
on the hidden state corresponding to the head of
the argument phrase, which is determined by in-
spection of the gold syntax tree.

Recently, Tenney et al. (2019) have demon-
strated the capacities of contextualized word em-
beddings across a wide variety of tasks, includ-
ing SPRL. However, for SPRL labeling they pro-
ceed similar to Rudinger et al. (2018) in the sense

1https://gitlab.cl.uni-heidelberg.de/
opitz/sprl

that they extract the gold heads of arguments in
their dependency-based SPRL approach. Instead
of using an LSTM to convert the input sentence
to a sequence of vectors they make use of large
language models such as ELMo (Peters et al.,
2018) or BERT (Devlin et al., 2018). The con-
textual vectors corresponding to predicate and the
(gold) argument head are processed by a projec-
tion layer, self-attention pooling (Lee et al., 2017)
and a two-layer feed forward neural network with
sigmoid output activation functions. To compare
with Rudinger et al. (2018), our basic model uses
standard GloVe embeddings. When our model is
fed with contextual embeddings a further observ-
able performance gain can be achieved.

To summarize, previous state-of-the-art SPRL
systems suffer from a common problem: they are
dependency-based and their results rely on gold
argument heads. Our approach, in contrast, does
not rely on any supplementary information from
gold syntax trees. In fact, our marker model for
SPRL is agnostic to any syntactic theory and acts
solely on the basis of argument spans which we
highlight with position markers.

SRL The task of automatically identifying
predicate-argument structures and assigning roles
to arguments was firstly investigated by Gildea
and Jurafsky (2002). Over the past years, SRL
has witnessed a large surge in interest. Recently,
very competitive end-to-end neural systems have
been proposed (He et al., 2018a; Cai et al., 2018;
He et al., 2018b). Strubell et al. (2018) show that
injection of syntax can help SRL models and Li
et al. (2019) bridge the gap between span-based
and dependency-based SRL, achieving new state-
of-the-art results both on the span based CoNLL
data (Carreras and Màrquez, 2005; Pradhan et al.,
2013) and the dependency-based CoNLL data
(Surdeanu et al., 2008; Hajič et al., 2009). A fully
end-to-end S(P)RL system has to solve multi-
ple sub-tasks: identification of predicate-argument
structures, sense disambiguation of predicates and
as the main and final step, labeling their argument
phrases with roles. Up to the present, SPRL works
(including ours) focus on the main task and as-
sume the prior steps as complete.

Research into SPRL is still in its infancy,
especially in comparison to SRL. One among
many reasons may be the fact that, in contrast
to semantic roles, semantic proto-roles are multi-
dimensional. This introduces more complexity:

https://gitlab.cl.uni-heidelberg.de/opitz/sprl
https://gitlab.cl.uni-heidelberg.de/opitz/sprl
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Figure 2: Model outline. Input: (i) a sequence of vec-
tors representing the words and (ii) a sequence of vec-
tors which serve to highlight predicate and argument.
Processing: 1. element-wise multiplication of the two
sequences (

⊗
); 2. generation of hidden states with for-

ward and backward Bi-LSTM reads ( & ); 3.
self-attention mechanism builds a new sequence of hid-
den states by letting every hidden state attend to every
other hidden state; 4. concatenation of the hidden states
to generate a vector representation ([; ]). Output: (i)
use vector representation to output Likert scale auxil-
iary predictions (FFReLU ) and (ii) concatenate auxil-
iary predictions to the vector representation ([; ]) to fi-
nally (iii) compute the multi-label predictions at the top
level (|P |·FFSoftmax; P : set of proto role properties).

given a predicate and an argument, the task is no
more to predict a single label (as in SRL), but a
list of multiple labels or even a multi-variate Lik-
ert scale. Another reason may be related to the
available resources. The published SPR data sets
comprise significantly fewer examples. The de-
sign of annotation guidelines and pilot studies with
the aim of in-depth proto-role annotations is a hard
task. In addition, the SPR data were created, at
least to a certain extent, in an experimental man-
ner: one of the goals of corpus creation was to
explore possible SPR annotation protocols for hu-
mans. We hope that a side-effect of this paper is to
spark more interest in SPR and SPRL.

3 Attentive Marker Model

Since the work of Teichert et al. (2017), the SPRL
problem has been phrased as follows: given a (sen-
tence, predicate, argument) tuple, we need to pre-
dict for all possible argument properties from a
given property-inventory whether they hold or not
(regression: how likely are they to hold?).

Following previous work (Rudinger et al.,
2018), the backbone of our model is a Bi-LSTM.
To ensure further comparability, pretrained 300 di-
mensional GloVe embeddings (Pennington et al.,
2014) are used for building the input sequence

(e1, ..., eT ). In contrast to Rudinger et al. (2018),
we multiply a sequence of marker embeddings
(m1, ...,mT ) element-wise with the sequence of
word vectors: (e1 ·m1, ..., eT ·mT ) (

⊗
, Figure 2).

We distinguish three different marker embeddings
that indicate the position of the argument in ques-
tion (red, Figure 2), the predicate (green, Figure
2) and remaining parts of the sentence. This is
to some extent similar to He et al. (2017) who
learn two predicate indicator embeddings which
are concatenated to the input vectors and serve the
purpose of showing the model whether a token is
the predicate or not. However, in SPRL we are
also provided with the argument phrase. We will
see in the ablation experiments that it is paramount
to learn a dedicated embedding. Embedding mul-
tiplication instead of concatenation has the advan-
tage of fewer LSTM parameters (smaller input di-
mension). Besides, it provides the model with the
option to learn large coefficients of the word vec-
tor dimensions of predicate and argument vectors.
This should immediately draw the model’s atten-
tiveness to the argument and predicate phrases
which now are accentuated.

The sequence of marked embeddings is further
processed by a Bi-LSTM in order to obtain a se-
quence of hidden states S = (s1, ..., sT ). In Fig-
ure 2, forward and backward LSTM reads are in-
dicated by and .

From there, we take intuitions from Zheng et al.
(2018) and compute the next sequence of vectors
by letting every hidden state attend to every other
hidden state, which is expressed by the following
formulas:

ht,t′ = tanh(QSt +KSt′ + β)

et,t′ = σ(vTht,t′ + α)

at = softmax(et)

zt =
∑
t′

at,t′ · st′

Q,K are weight matrices, β is a bias vector,
α is a bias scalar and v a weight vector. Let-
ting every hidden state attend to every other hid-
den state gives the model freedom in computing
the argument-predicate composition. This is de-
sirable, since arguments and predicates frequently
are in long-distance relationships. For example, in
Figure 3 we see that in the SPR1 data predicates
and arguments often lie more than 10 words apart
and a non-negligible amount of cases consists of
distances of more than 20 words.
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Figure 3: Distribution of the number of words between
argument and verb (distance relationship) and sentence
lengths in the data sets SPR1 and SPR2.

We proceed by concatenation, z = [z1; ...; zT ],
and compute intermediate outputs approximating
the property-likelihood Likert scales. This is
achieved with weight matrix A and ReLU acti-
vation functions (FF+ReLU , Figure 2):

a = ReLU(Az). (1)

To perform multi-label prediction with |P | pos-
sible labels we use [a; z] for computing the final
decisions with 2|P | output neurons and |P | sepa-
rate weight matrices (|P |∗FF+softmax, Figure 2),
one for each property p ∈ P :

op = softmax(W p[a; z]). (2)

For example, given the 18 proto-role properties
contained in SPR1, we learn |P | = 18 weight ma-
trices and use the Softmax functions to produce 18
vectors of dimension 2 as outputs. The first dimen-
sion op,0 represents the predicted probability that
property p does not apply (op,1: probability for p
applies). For the regression task, we reduce the
number of output neurons from 2|P | to |P | and
use ReLU activation functions instead. We hy-
pothesize that the hierarchical structure can sup-
port the model in making predictions on the top
layer. E.g., if the argument is predicted to be most
likely not sentient and very likely to be manipu-
lated, the model may be less tempted to predict
an awareness label at the top layer. The auxiliary
loss for any datum is given as the mean square er-
ror over the auxiliary output neurons:

`′ =
λ′

|P |
∑
p∈P

(a?p − ap)2 (3)

In case of the multi-label formulation, our main
loss for an example is the average cross entropy
loss over every property:

` = − λ

|P |
∑
p∈P

(o?p,1 log op,1 + o?p,2 log op,2), (4)

where o?p,0 = I(¬p) and o?p,1 = I(p) i.e. the gold
label indicator.

4 Experiments

Data We use the same data setup and split as Te-
ichert et al. (2017); Rudinger et al. (2018); Ten-
ney et al. (2019). For determining the gold labels,
we also conform to prior works and (i) collapse
classes in the multi-label setup from {NA, 1, 2, 3}
and {4, 5} to classes ‘−’ and ‘+’ and (ii) treatNA
as 1 in the Likert regression formulation. For dou-
bly annotated data (SPR2), the Likert scores are
averaged; in the multi-label setup we consider val-
ues≥ 4 as ‘+’ and map lesser scores to ‘−’. More
data and pre-processing details are described in the
Supplement §A.1.

Baselines As baselines we present the results
from previous systems: the state-of-the-art by
Rudinger et al. (2018) is denoted in our tables
as RUD’18, the linear feature-based classifier by
Reisinger et al. (2015) as REI’15 and the CRF de-
veloped by Teichert et al. (2017) as TEI’17. Like
previous works, we use macro F1 as the global
performance metric in the multi-label scenario and
macro-averaged Pearson’s ρ (arithmetic mean over
the correlation coefficients for each property, de-
tails can be found in the Supplement A.1) We re-
fer to the system results as reported by Rudinger
et al. (2018). The most recent work, which eval-
uates large language models on a variety of tasks
including SPRL, is denoted by TEN’19 (Tenney
et al., 2019). In this case, we present the micro F1
results as reported in their paper.

Model instantiation We introduce four main
models: (i) Marker: our basic, span-based single-
model system. For (ii) MarkerE, we fit an ensem-
ble of 50 Markers with different random seeds.
Computationally, training 50 neural models in this
task is completely feasible since neither SPR1 nor
SPR2 contain more than 10,000 training examples
(parallelized training took approximately 2 hours).
The ensemble predicts unseen testing data by com-
bining the models’ decisions in a simple major-
ity vote when performing multi-label prediction
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or, when in the regression setup, by computing
the mean of the output scores (for every property).
We also introduce (iii) MarkerB, and (iv) Mark-
erEB. These two systems differ in only one as-
pect from the previously mentioned models: in-
stead of GloVe word vectors, we feed contextual
vectors extracted from the BERT model (Devlin
et al., 2018). More precisely, we use the trans-
former model BERT-base-uncased2 and sum the
inferred activations over the last four layers. The
resulting vectors are concatenated to GloVe vec-
tors and then processed by the Bi-LSTM.

We fit all models with gradient descent and ap-
ply early stopping on the development data (max-
imum average Pearson’s ρ for multi-variate Likert
regression, maximum macro F1 for the multi-label
task). Further hyper parameter choices and details
about the training are listed in Appendix §A.2.

4.1 Multi-Label Prediction Results

News texts The results on newspaper data
(SPR1) are displayed in Table 1 (left-hand side).
Our basic ensemble (MarkerE) improves mas-
sively in the property location3 (+19.1 pp. F1).
A significant loss is experienced in the property
changes possession (-9.6). Overall, our ensem-
ble method outperforms all prior works (REI’15:
+17.7 pp. macro F1; TEI’17: +6.2, RUD’18:
+1.0). Our ensemble method provided with addi-
tional contextual word embeddings (MarkerEB)
yields another large performance gain. The old
state-of-the-art, RUD’18, is surpassed by more
than 6.0 pp. macro F1 (a relative improvement of
8.6%). With regard to some properties, the con-
textual embeddings provide massive performance
gains over our basic MarkerE: stationary (+9.5
pp. F1), makes physical contact (+21.3), change
of location (+14.1) and created (+17.3). The only
loss is incurred for the property which asks if an
argument is destroyed (-12.3). This specific prop-
erty appears to be difficult to predict for all mod-
els. The best score in this property is achieved by
MarkerE with only 26.6 F1.

Web texts On the web texts (SPR2), due to less
previous works, we also use three label selection
strategies as baselines: a majority label baseline, a
constant strategy which always selects the positive
label and a random baseline which samples a pos-

2https://github.com/google-research/
bert

3i.e. does the argument describe the location of the event?

itive target label according to the occurrence ratio
in the training data (maj, constant & ran, Table 2,
left-hand side).

Our basic MarkerE method yields massive im-
provements over both baselines (more than +10
pp. F1) in 4 out of 14 proto-role properties. For
argument changes possession and awareness the
improvement over both baselines is more than +25
pp. F1 and for sentient more than +40 pp. How-
ever, in the partitive property, the constant-label
baseline remains unbeaten by a large margin (-
21.7 pp.). Overall, all Marker models yield large
performance increases over the baselines. For ex-
ample, MarkerE yields significant improvements
both over random (+27.7 pp. macro F1), constant
(+9.5) and majority (+45.0).

Intriguingly – while the contextual embeddings
provide a massive performance boost on news
texts (SPR1), – they appear not to be useful for
our model on the web texts. The macro F1 score
of MarkerEB is slightly worse (-1 pp.) than
that of MarkerE and the micro F1 score is only
marginally better (+0.9). The same holds true
for the single-model instances: Marker performs
better than MarkerB by 2.2 pp. macro F1 albeit
marginally worse micro F1 wise by 0.5 pp.

Why exactly the contextual embeddings fail to
provide any valuable information when labeling
arguments in web texts, we cannot answer with
certainty. A plausible cause could be overfitting
problems stemming from the increased dimen-
sionality of the input vectors. In fact, the con-
textual embeddings increase the number of word
vector features by more than two times over the
dimension of the GloVe embeddings. This inflates
the number of parameters in the LSTM’s weight
matrices. As a consequence, the likelihood of
overfitting is increased – an issue which is further
aggravated by the fact that SPR2 data are signifi-
cantly fewer than SPR1 data. SPR2 contains less
than five thousand predicate-argument training ex-
amples, roughly half the size of SPR1.

Another source of problems may be rooted in
the target-label construction process for SPR2.
This question does not arise when using SPR1 data
since all annotations were performed by a single
annotator. The SPR2 data, in contrast, contains
for each predicate-argument pair, two annotations.
In total, the data was annotated by many crowd
workers – some of whom provided many and some
provided few annotations. Perhaps, averaging Lik-

https://github.com/google-research/bert
https://github.com/google-research/bert
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multi-label (ML), F1 score regression (LR), ρ

previous works ours ours
property REI’15 TEI’17 RUD’18 MarkerE Marker MarkerEB MarkerB RUD’18 MarkerE Marker MarkerEB MarkerB

awareness 68.8 87.3 89.9 89.4 88.1 93.4 91.6 0.897 0.880 0.868 0.922 0.915
chg location 6.6 35.6 45.7 50.5 53.2 64.6 57.1 0.702 0.768 0.744 0.835 0.814
chg state 54.6 66.1 71.0 66.6 68.2 71.5 66.1 0.604 0.651 0.621 0.701 0.653
chg possession 0.0 38.8 58.0 48.4 55.5 55.7 59.5 0.640 0.609 0.576 0.652 0.582
created 0.0 44.4 39.7 34.8 46.5 52.2 56.1 0.549 0.593 0.498 0.669 0.614
destroyed 17.1 0.0 24.2 26.6 19.9 14.3 22.2 0.346 0.368 0.220 0.412 0.347
existed after 82.3 87.5 85.9 87.0 82.9 88.5 84.8 0.619 0.612 0.571 0.695 0.669
existed before 79.5 84.8 85.1 87.4 85.4 90.1 85.8 0.710 0.704 0.668 0.781 0.741
existed during 93.1 95.1 95.0 95.2 94.3 95.8 94.0 0.673 0.675 0.626 0.732 0.714
exists as physical 64.8 76.4 82.7 83.7 80.6 88.1 85.8 0.834 0.807 0.777 0.871 0.856
instigated 76.7 85.6 88.6 86.6 86.4 88.9 87.6 0.858 0.856 0.842 0.879 0.860
location 0.0 18.5 53.8 72.9 69.8 78.9 76.1 0.619 0.755 0.742 0.849 0.820
makes physical contact 21.5 40.7 47.2 45.7 32.3 67.0 61.1 0.741 0.716 0.671 0.801 0.772
manipulated 72.1 86.0 86.8 86.9 86.7 89.6 86.5 0.737 0.738 0.705 0.774 0.751
pred changed arg 54.0 67.8 70.7 68.1 67.6 72.8 66.1 0.592 0.621 0.579 0.714 0.664
sentient 42.0 85.6 90.6 89.5 88.3 95.4 92.2 0.925 0.904 0.887 0.959 0.951
stationary 13.3 21.4 47.4 41.0 25.0 50.5 54.5 0.711 0.666 0.654 0.771 0.739
volitional 69.8 86.4 88.1 88.3 86.7 91.6 90.1 0.882 0.873 0.863 0.911 0.903

micro 71.0 81.7 83.3 83.6 82.0 86.8 83.5 - - - - -
macro 55.4 65.9 71.1 72.1 69.3 77.5 73.8 0.706 0.711 0.673 0.774 0.743

Table 1: SPR1 results. bold: better than all previous work; bold: overall best.

multi-label (ML), F1 score regression (LR), ρ

baselines ours ours
property maj ran const MarkerE Marker MarkerEB MarkerB RUD’18 MarkerE Marker MarkerEB MarkerB

awareness 0.0 48.9 67.1 92.7 92.3 94.0 91.1 0.879 0.882 0.868 0.902 0.878
chg location 0.0 12.0 21.7 28.6 35.1 38.0 18.2 0.492 0.517 0.476 0.563 0.507
chg possession 0.0 5.5 6.6 33.3 33.3 35.6 41.1 0.488 0.520 0.483 0.549 0.509
chg state 0.0 19.5 31.3 29.7 27.1 41.4 45.2 0.352 0.351 0.275 0.444 0.369
chg state continuous 0.0 9.2 21.7 25.3 19.8 26.8 30.4 0.352 0.396 0.321 0.483 0.423
existed after 94.1 86.1 94.1 94.0 92.4 94.0 94.5 0.478 0.469 0.403 0.507 0.476
existed before 89.5 80.0 89.5 91.0 90.5 92.0 89.8 0.616 0.645 0.605 0.690 0.664
existed during 98.0 96.2 97.0 98.0 97.8 98.1 98.1 0.358 0.374 0.280 0.354 0.301
instigated 0.0 48.9 70.5 77.9 78.0 78.9 78.7 0.590 0.582 0.540 0.603 0.599
partitive 0.0 10.4 24.2 2.5 16.5 9.2 2.4 0.359 0.283 0.213 0.374 0.330
sentient 0.0 47.6 44.3 91.9 91.6 93.7 92.0 0.880 0.874 0.859 0.892 0.872
volitional 0.0 39.1 61.8 88.1 87.2 89.7 88.5 0.841 0.839 0.825 0.870 0.854
was for benefit 0.0 31.6 48.8 61.1 59.2 60.2 63.4 0.578 0.580 0.525 0.598 0.569
was used 79.3 66.1 79.3 77.9 78.0 77.6 79.9 0.203 0.173 0.093 0.288 0.264

micro 65.0 62.9 61.4 84.0 83.4 84.9 83.9 - - - - -
macro 25.9 43.2 61.4 70.9 69.7 69.9 67.5 0.534 0.535 0.483 0.580 0.544

Table 2: SPR2 results. bold: better than previous work and/or baselines; bold: overall best.

ert scale annotations of two random annotators is
not the right way to transform SPR2 to a multi-
label task. Future work may investigate new trans-
formation strategies. For example, we can envi-
sion a strategy which finds reliable annotators and
weighs the choices of those annotators higher than
those of less reliable annotators. This should result
in an improved SPR2 gold standard for both multi-
label and multi-variate Likert scale SPRL systems.

4.2 Likert Scale Regression Results

News texts MarkerE achieves large perfor-
mance gains for the properties location and
change of location (∆ρ: +0.136 & ∆ρ: +0.066,
Table 1). This is in accordance with the results
for these two properties in the multi-label predic-

tion setup. Our model is outperformed by RUD’18
in the property stationary (∆ρ: -0.045). All in
all, MarkerE outperforms RUD’18 (∆ macro ρ:
+0.005). When providing additional contextual
word embeddings from the large language model,
the correlations intensify for almost all role prop-
erties. Overall, the contextual embeddings in
MarkerEB yield an observable improvement of
+0.063 ∆ macro ρ over MarkerE (which solely
uses GloVe embeddings).

Web texts Our MarkerE model outperforms
RUD’18 slightly by +0.001∆ρ (Table 2). How-
ever, if we compare with RUD’18’s model setup
which achieved the best score on the SPR1
testing data (pre-training with a supervised MT
task, macro regression result SPR2: 0.521ρ), we
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macro result micro result

used by system SPR1 SPR2 SPR1 SPR2
Method span or dep. gold head STL ensembling C-embeddings ML LR ML LR ML ML

ou
rs

pr
ev

io
us

REI’15 span no no no no 55.4 - - - 71.0 -
TEI’17 dependency yes (full parse) no no no 65.9 - - - 81.7 -
RUD’18 dependency yes no no no 69.3 0.697 - 0.534 82.2 -
RUD’18(+MT pretrain) dependency yes yes no no 71.1 0.706 - 0.521 83.3 -
TEN’19 dependency yes no no yes (BERT concat) - - - - 84.7 83.0
TEN’19 dependency yes no no yes (BERT lin. comb.) - - - - 86.1† 83.8

Marker span no no no no 69.3 0.682 67.9† 0.483 80.8 81.1
MarkerE span no no yes no 72.1 0.711 70.9 0.535 83.6 84.0
MarkerB span no no no yes (BERT sum) 73.5† 0.741† 67.5 0.544† 84.9 83.9†

MarkerEB span no no yes yes (BERT sum) 77.5 0.774 69.9 0.580 86.8 84.9

Table 3: Main results, system properties and requirements of SPRL systems. Overall best system is marked in bold,
best system using GloVe is underlined, best single-model system is marked by †. STL: supervised transfer-learning
(e.g., RUD’18: pre-training on MT task). C-embeddings: contextual word embeddings (BERT-base). ML: multi-
label prediction; LR: multi-variate Likert regression. BERT concat: last four BERT layers are concatenated.
BERT lin. comb.: optimized linear combination of last four BERT layers (our BERT based models sum the last
four layers). The Table is further discussed in the Section Discussion §4.3.

achieve a significantly higher macro-average (∆ρ:
+0.014). Yet again, when our model is provided
with contextual word embeddings, a large per-
formance boost is the outcome. In fact, Mark-
erEB outperforms MarkerE by +0.045 ∆ macro
ρ and RUD’18’s best performing configuration
by +0.046. This stands in contrast to the multi-
labeling results on this type of data, where the
contextual embeddings did not appear to provide
any performance increase. As previously dis-
cussed (§4.1), this discrepancy may be rooted in
the task generation process of SPR2 which re-
quires transforming two annotations per example
to one ground truth (the two annotations per ex-
ample stem from two out of, in total, 50 workers).

4.3 Discussion

Leaving the contextual word embedding inputs
aside, the performance differences of our Marker
models to RUD’18 may seem marginal for many
properties. Albeit our MarkerE yields an ob-
servable improvement of 1.0 pp. macro F1 in the
multi-label setup, in the regression setup the per-
formance gains are very small (∆ρ SPR1: +0.005,
∆ρ SPR2: +0.001, Table 1 & 3). In addition, our
model as a single model instance (Marker) is out-
performed by RUD’18’s approach both in the re-
gression and in the multi-label setup. However, it
is important to note that the result of our system
has substantially fewer dependencies (Table 3).

Firstly, our model does not rely on supplemen-
tary gold syntax – in fact, since it is span-based,
our model is completely agnostic to any syntax.
Besides our approach, only REI’15 does not de-
pend on supplementary gold syntax for the dis-

played results. However, all of our models out-
perform REI’15’s feature-based linear classifier in
every property (+17 pp. macro F1 in total) ex-
cept for destroyed (where MarkerEB performed
slighly worse by -2.8 pp. F1). Also, results of
SRL systems on semantic role labeling data show
that span-based SRL systems often lag behind a
few points in accuracy (cf. Li et al. (2019), Ta-
ble 1). When provided with the syntactic head
of the argument phrase, a model may immedi-
ately focus on what is important in the argument
phrase. When solely fed the argument-span, which
is potentially very long, the model has to find the
most important parts of the phrase on its own and
is more easily distracted. Additionally, identify-
ing the head word of an argument may be more
important than getting the boundaries of the span
exactly right. In other words, span-based SPRL
models may be more robust when confronted with
slightly erroneous spans compared to dependency-
based models which may be vulnerable to false
positive heads. However, this hypothesis has to
be confirmed or disproven experimentally in fu-
ture work.

Further information about differences of vari-
ous SPRL approaches is displayed in Table 3. In
sum, despite having significantly fewer dependen-
cies on external resources, our approach proves to
be competitive with all methods from prior works,
including neural systems. When combined in a
simple ensemble, our model outperforms previ-
ous systems. When we feed additional contex-
tual word embeddings, the results can be boosted
further by a large margin. In the following sec-
tion, we show that ensembling SPRL models has
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Ensembling worse Ensembling better

Data p ∈ [0.005, 0.05) p < 0.005 p ∈ [0.005, 0.05) p < 0.005 NS

SPR1 0 1 5 9 3
SPR2 1 1 5 2 5

Table 4: McNemar significance test results of Mark-
erEB against MarkerB. Counts of properties for which
a significance category applies (NS: #properties with
insignificant difference).

another advantage besides predictive performance
gains. Namely, it decreases SPRL model sensitiv-
ities towards different random initializations. As a
result, we find that a simple neural voter commit-
tee (ensemble) offers more robust SPRL predic-
tions compared to a randomly selected committee-
member (single model).

4.4 Analysis

Ensembling increases accuracy To investigate
whether ensembling improves proto-role labeling
results significantly, we conduct McNemar signif-
icance tests (McNemar, 1947) comparing the pre-
dictions of MarkerB and MarkerEB. The signifi-
cance test results summarized in Table 4 are unam-
biguous: for many proto-role properties, ensem-
bling helps to improve performance significantly
(SPR1: 14

18 cases; SPR2: 7
14 cases; significance

level: p < 0.05). However, for few cases, en-
sembling resulted in significantly worse predic-
tions (SPR1: change of location; SPR2: change
of location, instigated and partitive; significance
level: p < 0.05). For the rest of the properties,
differences in predictions remain insignificant.

Ensembling increases robustness Addition-
ally, we find that ensembling increases the robust-
ness of our neural models. Consider Figure 4,
where we display the performance difference of
a n-voter ensemble to the same ensemble after
one additional voter joined (n+1-voter ensemble).
The difference fluctuates wildly while the ensem-
ble is still small. This suggests that a different ran-
dom seed yields significantly different predictions.
Hence, our a single neural Marker model is very
vulnerable to the quirks of random numbers. How-
ever, when more voters join, we see that the pre-
dictions become notably more stable. An outcome
which holds true for both data sets and two dif-
ferent ensemble model configurations (MarkerE
and MarkerEB). We draw two conclusions from
this experiment: (i) a single neural SPRL model
is extremely sensitive to different random initial-

ablated component

Data MarkerEB SelfAtt mark. pred-mark. arg-mark. hier.

SPR1 77.5 73.1 50.7 76.3 60.1 76.7
SPR2 69.9 67.3 59.3 68.2 63.3 68.9

Table 5: Multi-labeling F1 macro scores for different
MarkerEB model configurations over SPR1 and SPR2.

izations. Finally, (ii) a simple voter ensemble has
the potential to alleviate this issue. In fact, when
we add more voters, the model converges towards
stable predictions which are less influenced by the
quirks of random numbers.

Model Ablations All ablation experiments are
conducted with MarkerEB in the multi-label for-
mulation. We proceed by ablating different com-
ponents in a leave-one-out fashion: (i) the self-
attention components of the ensemble model are
removed (SelfAtt in Table 5); (ii) we abstain from
highlighting (a) the arguments and predicates, (b)
only the predicates and (c) only the arguments
(mark. pred-mark. and arg-mark. in Table 5); Fi-
nally, (iii) we remove the hierachical structure and
do not predict auxiliary outputs (hier. in Table 5).

From all ablated components, removing simul-
taneously both predicate and argument-markers
hurts the model the most (SPR1: -26.8 pp.
macro F1; SPR2: -10.6). Only ablating the
argument-marker also causes a great performance
loss (SPR1: -17.4, SPR2: - 6.6). On the other
hand, when only the predicate marker is ablated,
the performance decreases only slightly (SPR1: -
1.2, SPR2: -1.7). In other words, it appears to
be of paramount importance to provide our model
with indicators for the argument position in the
sentence, but it is of lesser importance to point at
the predicate. The self-attention component can
boost the model’s performance by up to +4.4 pp.
F1 on SPR1 and +2.6 on SPR2. The hierarchical
structure with intermediate auxiliary Likert scale
outputs leads to gains of approximately +1 pp.
macro F1 in both data sets. This indicates that
indeed the finer Likert scale annotations provide
auxiliary information of value when predicting the
labels at the top layer, albeit the performance dif-
ference appears to be rather small.

5 Conclusion

In our proposed SPRL ensemble model, predicate-
argument constructs are highlighted with con-
currently learned marker embeddings and self-
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(a) Data: SPR1, voter: Marker.
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(b) Data: SPR1, voter: MarkerB.
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(c) Data: SPR2, voter: Marker.
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(d) Data: SPR2, voter: MarkerB.

Figure 4: Adding more voters leads to convergence in SPRL predictions. x-axis: number of voter models partaking
in the ensemble. y-axis: F1 mean difference over all proto-roles from the ensemble with x voters compared to the
ensemble with x− 1 voters. Thin bars represent standard deviations.

attention enables the model to capture long-
distance relationships between arguments and
predicates. The span-based method is competitive
with the dependency-based state-of-the-art which
uses gold heads. When combined in a simple en-
semble, the method overall outperforms the state-
of-the-art on newspaper texts (multi-label predic-
tion macro F1: +1.0 pp.). When fed with contex-
tual word embeddings extracted from a large lan-
guage model, the method outperforms the state-of-
the-art by 6.4 pp. macro F1. Our method is com-
petitive with the state-of-the-art for Likert regres-
sion on texts from the web domain. In the multi-
label setting, it outperforms all baselines by a large
margin. Furthermore, we have shown that a sim-
ple Marker model voter ensemble is very suited for
conducting SPRL, for two reasons: (i) results for
almost every proto-role property are significantly
improved and (ii) considerably more robust SPRL
predictions are obtained.

We hope that our work sparks more research
into semantic proto-role labeling and corpus cre-
ation. Dowty’s feature-based view on roles allows
us to analyze predicate-argument configurations in

great detail – an issue which we think is located in
the marrow of computational semantics.
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A Supplemental Material

A.1 Notes

Calculation of macro F1 The global perfor-
mance metric for multi-label SPRL is defined as
‘macro F1’. To ensure full comparability of re-
sults, we use the same formula as prior works
(Rudinger et al., 2018):

2 · Pmacro avg. ·Rmacro avg.

Pmacro avg. +Rmacro avg.
, (5)

where P and R are Precision and Recall and
macro avg. means the unweighted mean of these
quantities computed over all proto-role properties.
The above macro F1 metric, though not explicitly
displayed in the prior work papers, has been con-
firmed by the main authors (email).

Calculation of Pearson’s ρ Person’s ρ quanti-
fies the linear relationship between two random
variables X and Y . Computed over a sample
{(xi, yi)}n1 it is calculated with the following for-
mula:

ρ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(6)

Given |P | proto-role properties and correspond-
ing correlation coefficients ρ1, ...ρ|P |, the macro
Pearson’s ρ is calculated as

macro ρ =

∑|P |
i=1 ρi
|P |

. (7)

hyper-parameter choice

λ (main loss) 1
λ′ (aux. losses) 0.2
optimizer Adam (Kingma and Ba, 2014)
optimizer param. β1 = 0.9, β2 = 0.999, ε = 1e−07

learning rate 0.001
Bi-LSTM units 2 · 64
max. seq length 30
padding pre
Marker embeddings,init U(−0.05,+0.05)
Fixed embeddings, init GloVe 300d (Pennington et al., 2014)

Table 6: Hyper parameter configuration.

Data split of SPR1 (Teichert et al., 2017) re-
framed the SPRL task as a multi-label problem.
Previously the task was to answer, given a pred-
icate and an argument, one specific proto-role
question (binary label or single output regression).
Now we need to predict all proto-role questions
at once (multi-label or multi-ouput regression). In
order to allow this formulation of the task, the au-
thors needed to redefine the original train-dev-test
split of SPR1 (recent works, including ours, all use
the re-defined split).

Reported Numbers In the EMNLP publication
of Rudinger et al. (2018) we found a few minor
transcription errors in the result tables (confirmed
by email communication with the main authors,
who plan to upload an errata section). In the case
of transcription errors, we took the error-corrected
numbers which were sent to us via email.

A.2 Hyperparameters & Preprocessing
The hyper parameter configuration of our model
are displayed in Table 6. Sequence pruning: Con-
sider that I = {i} is the index of the predicate
and J = {j, ..., k} are the indices corresponding
to the argument. As long as the input sequence
length is longer than maximum length (30, cf. Ta-
ble 6), we clip left tokens so that the index of the
token m < min I ∪ J , then we proceed to clip to-
kens to the right so that m > max I ∪ J , for the
very rare cases that this was not sufficient we pro-
ceed to clip tokens with m /∈ I ∪ J (the marker
sequences are adjusted accordingly). The clip-
ping strategy ensures that predicate and argument
tokens are present in every input sequence. Se-
quences which are shorter than 30 words are pre-
padded with zero vectors.
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