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Abstract

When we build a neural network model pre-
dicting the relationship between two sen-
tences, the most general and intuitive approach
is to use a Siamese architecture, where the
sentence vectors obtained from a shared en-
coder is given as input to a classifier. For the
classifier to work effectively, it is important
to extract appropriate features from the two
vectors and feed them as input. There exist
several previous works that suggest heuristic-
based function for matching sentence vectors,
however it cannot be said that the heuris-
tics tailored for a specific task generalize to
other tasks. In this work, we propose a
new matching function, EIBiS, that learns to
model element-wise interaction between two
vectors. From experiments, we empirically
demonstrate that the proposed EIBiS matching
function outperforms the concatenation-based
or heuristic-based matching functions on nat-
ural language inference and paraphrase identi-
fication, while maintaining the fused represen-
tation compact.

1 Introduction

Identifying the relationship between two sentences
is a key component for various natural language
processing tasks such as paraphrase identification,
semantic relatedness prediction, textual entailment
recognition, etc. The most general and intuitive
approach to these problems would be to encode
each sentence using a sentence encoder network
and feed the encoded vectors to a classifier net-
work.!

For a model to predict the relationship correctly,
it is important for the input to the classifier to
contain appropriate information. The most naive

! The encoded vectors can also be fed into a regression
network, however in this work we focus only on classifica-
tion.

method is to concatenate the two vectors and del-
egate the role of extracting features to subsequent
network components. However, despite the theo-
retical fact that even a single-hidden layer feedfor-
ward network can approximate any arbitrary func-
tion (Cybenko, 1989; Hornik, 1991), the space of
network parameters is too large, and it is helpful
to narrow down the search space by directly giv-
ing information about interaction to the classifier
model, as empirically proven in previous works
built for various tasks (Ji and Eisenstein, 2013;
Mou et al., 2016; Xiong et al., 2016, to name but a
few).

In this paper, we propose a matching function
which learns from data to fuse two sentence vec-
tors and extract useful features. Unlike bilinear
pooling methods designed for matching vectors
from heterogeneous domain (e.g. image and text),
our proposed method utilizes element-wise bilin-
ear interaction between vectors rather than interdi-
mensional interaction. In §3, we will describe the
intuition and assumption behind the restriction of
interaction.

This paper is organized as follows. In §2, we
briefly introduce previous work related to our ob-
jective. The detailed explanation of the proposed
model is given in §3, and we show its effectiveness
in extracting compact yet powerful features in §4.
§5 concludes the paper.

2 Related Work

As stated above, matching sentences is a com-
mon component in various tasks in natural lan-
guage processing. Ji and Eisenstein (2013) empir-
ically prove that the use of element-wise multipli-
cation and absolute difference as matching func-
tion substantially improve performance on para-
phrase identification, and Tai et al. (2015) apply
the same matching scheme to the semantic related-
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ness prediction task. Mou et al. (2016) show that
using the element-wise multiplication and differ-
ence along with the concatenation of sentence vec-
tors yields good performance in natural language
inference, despite redundant components such as
concatenation and element-wise difference. Yo-
gatama et al. (2017) and Chen et al. (2017) use
modified versions of the heuristics proposed by
Mou et al. (2016) in natural language inference.

However, to the best of our knowledge, there ex-
ists little work on a method that adaptively learns
to extract features from two sentence vectors en-
coded by a shared encoder. Though not directly
related to our work’s focus, there exist approaches
to fuse vectors from a homogeneous space using
exact or approximate bilinear form (Socher et al.,
2013; Lin et al., 2015; Wu et al., 2016; Krause
et al., 2016).

There have been several works for extracting
features from two heterogeneous vectors. Wu
et al. (2013) use a bilinear model to match queries
and documents from different domains. Also,
approximate bilinear matching techniques such
as multimodal compact bilinear pooling (MCB;
Fukui et al., 2016), low-rank bilinear pooling
(MLB; Kim et al., 2017), and factorized bilinear
pooling (MFB; Yu et al., 2017) are successfully
applied in visual question answering (VQA) tasks,
outperforming heuristic feature functions (Xiong
etal., 2016; Agrawal et al., 2017).

MCB approximate the full bilinear matching
using Count Sketch (Charikar et al., 2002) algo-
rithm, MLB and MFB decompose a third-order
tensor into multiple weight matrices, and MUTAN
(Ben-younes et al., 2017) use Tucker decompo-
sition to parameterize bilinear interactions. Al-
though these bilinear pooling methods give signif-
icant performance improvement in the context of
VQA, we found that they do not help matching
sentences encoded by a shared encoder.

3 Proposed Method: EIBiS

As pointed out by previous works on sentence
matching (Ji and Eisenstein, 2013; Mou et al.,
2016), heuristic matching functions bring substan-
tial gain in performance over the simple concate-
nation of sentence vectors. However, we believe
that there could be other important interaction that
simple heuristics miss, and the optimal heuristic
could differ from task to task. In this section, we
propose a general matching function that learns to
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extract compact and effective features from data.

Let a (ai,---,ay) € R? and b
(b1,--- ,bg) € R? be sentence vectors obtained
from a encoder network.> And let us define G €
R¥*3 as a matrix constructed by stacking three
vectors a, b, 1 € R? where 1 is the vector of all
ones, and denote the ¢-th row of G by g;.

Then the result of applying our proposed match-
ing function, r = (ry,--- ,74) € RY, is defined by

ri=o (sl Wigi) | M

where W; € R3*3 i € {1,--- ,d} is a matrix of
trainable parameters and ¢(-) an activation func-
tion (tanh in our experiments).

Due to its use of bilinear form, it can
model every quadratic relation between a; and
b;, i.e. can represent every linear combination
of {a?,b?,a;b;,a;,b;,1}. This means that the
proposed method is able to express frequently
used element-wise heuristics such as element-wise
sum, multiplication, subtraction, etc., in addition
to other possible relations.>

Further, to consider multiple types of element-
wise interaction, we use a set of M weight ma-
trices per dimension. That is, for each g;, we
get M scalar outputs (r},---,rM) by applying

7;7..

Eq. 1 using a set of separate weight matrices
(Wi, W)
= (8] W) @)

Implementation-wise, we vertically stack G for M
times to construct G € RM d%3 and use each row
g; as input to Eq. 1. As a result, the resulting
output r becomes a M d-dimensional vector:
ri=o (8 Wigi), 3)
where W; € R33 i € {1,---,Md}. Eq. 1is
the special case of Eq. 2 and 3 where M = 1. We
call our proposed element-wise bilinear matching
function EIBiS (Element-wise Bilinear Sentence
Matching).
Note that our element-wise matching requires
only M x 3 x 3 x d parameters, the number of

% Throughout this paper, we assume a d-dimensional vec-
tor is equivalent to the corresponding d X 1 matrix.

3 Though a bilinear form cannot represent the absolute
difference between inputs, note that (a; —b;)? = a? —2a;b; +
b? can alternatively represent commutative difference. Yo-
gatama et al. (2017) use this quadratic form instead of the
absolute difference.



which is substantially less than that of full bilin-
ear matching, Md>. For example, in the case of
d = 300 and Md = 1200 (the frequently used
set of hyperparameters in NLI), the full bilinear
matching needs 108 million parameters, while the
element-wise matching needs only 10,800 param-
eters.

Why element-wise? In the scenario we are fo-
cusing on, sentence vectors are computed from a
Siamese network, and thus it can be said that the
vectors are in the same semantic space. There-
fore, the effect of considering interdimensional in-
teraction is less significant than that of multimodal
pooling (e.g. matching a text and a image vector),
so we decided to model more powerful interaction
within the same dimension instead. We also would
like to remark that our preliminary experiments,
where MFB (Yu et al., 2017) or MLB (Kim et al.,
2017) was adopted as matching function, were not
successful.

4 Experiments

We evalute our proposed EIBiS model on the nat-
ural language inference and paraphrase identifica-
tion task. Implementation for experiments will be
made public.

4.1 Natural Language Inference

Natural language inference (NLI), also called rec-
ognizing textual entailment (RTE), is a task whose
objective is to predict the relationship between a
premise and a hypothesis sentence. We conduct
experiments using Stanford Natural Language In-
ference Corpus (SNLI; Bowman et al., 2015), one
of the most famous dataset for the NLI task. The
SNLI dataset consists of roughly 570k premise-
hypothesis pairs, each of which is annotated with
a label (entailment, contradiction, or neutral).

For sentence encoder, we choose the en-
coder based on long short-term memory (LSTM;
Hochreiter and Schmidhuber, 1997) architecture
as baseline model, which is similar to that of Bow-
man et al. (2015) and Bowman et al. (2016). It
consists of a single layer unidirectional LSTM net-
work that reads a sentence from left to right, and
the last hidden state is used as the sentence vector.
We also conduct experiments using a more elab-
orated encoder model, Gumbel Tree-LSTM (Choi
et al., 2018). As a classifier network, we use an
MLP with a single hidden layer. In experiments
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Matching Fn.  # Params. Acc. (%)
Concat 1.34M 81.6
Heuristic 1.96M 83.9
EIBiS (M = 1) 1.04M 84.4
EIBiS (M = 2) 1.35M 84.5
EIBiS (M = 3) 1.66M 85.0
EIBiS (M = 4) 1.97M 84.6

Table 1: Results on the SNLI task using LSTM-based
sentence encoders.

Matching Fn.  # Params. Acc. (%)
Concat 2.25M 82.4
Heuristic 2.86M 84.6
EIBiS (M =1) 1.94M 84.8
EIBiS (M = 2) 2.25M 85.6
EIBiS (M = 3) 2.56M 85.9
EIBiS (M = 4) 2.87TM 85.6

Table 2: Results on the SNLI task using Gumbel Tree-
LSTM-based sentence encoders.

with heuristic matching we use the heuristic fea-
tures proposed by Mou et al. (2016) and adopted
in many works on the NLI task: [a; b;a—b;a®b],
where a and b are encoded sentence vectors. For
more detailed experimental settings, we refer read-
ers to §A.1.

Table 1 and 2 contain results on the SNLI task.
We can see that models that adopt the proposed
EIBiS matching function extract powerful features
leading to a performance gain, while keeping simi-
lar or less number of parameters. Also, though not
directly related to our main contribution, we found
that, with elaborated initialization and regulariza-
tion, simple LSTM models (even the one with the
heuristic matching function) achieve competitive
performance with those of state-of-the-art mod-
els.*

4.2 Paraphrase Identification

Another popular task on identifying relationship
between a sentence pair is paraphrase identifica-
tion (PI). The objective of the PI task is to pre-
dict whether a given sentence pair has the same
meaning or not. To correctly identify the para-
phrase relationship, an input to a classifier should
contain the semantic similarity and difference be-
tween sentences.

For evaluation of paraphrase identification, we

*https://nlp.stanford.edu/projects/
snli



Matching Fn.  # Params. Acc. (%)
Concat 1.34M 85.0
Heuristic 1.34M 87.0
EIBiS (M =1) 1.04M 86.7
EIBiS (M = 2) 1.35M 87.3
EIBiS (M = 3) 1.66M 87.1

Table 3: Results on the PI task using LSTM-based sen-
tence encoders.

use Quora Question Pairs dataset’. The dataset
contains 400k question pairs, each of which is an-
notated with a label indicating whether the ques-
tions of the pair have the same meaning. To our
knowledge, the Quora dataset is the largest avail-
able dataset of paraphrase identification. We used
the same training, development, test splits as the
ones used in Wang et al. (2017).

For experiments with heuristic matching, we
used the function proposed by Ji and Eisenstein
(2013), which is shown by the authors to be ef-
fective in matching vectors in latent space com-
pared to simple concatenation. It is composed of
the element-wise product and absolute difference
between two vectors: [a® b; |a—bl], where a and
b are encoded sentence vectors.

Similar to NLI experiments, we use a single
layer unidirectional LSTM network as sentence
encoder, and we state detailed settings in §A.2.
The results on the PI task is listed in Table 3.
Again we can see that the models armed with the
EIBiS matching function discover parsimonious
and effective interaction between vectors.

5 Conclusion and Discussion

In this work, we propose EIBiS, a general method
of fusing information from two sentence vectors.
Our method does not rely on heuristic knowl-
edge constructed for a specific task, and adaptively
learns from data the element-wise connections be-
tween vectors from data. From experiments, we
demonstrated that the proposed method outper-
forms or matches the performance of commonly
used concatenation-based or heuristic-based fea-
ture functions, while maintaining the fused repre-
sentation compact.

Although the main focus of this work is about
sentence matching, the notion of element-wise bi-
linear interaction could be applied beyond sen-

*https://data.quora.com/

First-Quora-Dataset—-Release-Question-Pairs

tence matching. For example, many models that
specialize in NLI have components where the
heuristic matching function is used, e.g. in com-
puting intra-sentence or inter-sentence attention
weights. It could be interesting future work to re-
place these components with our proposed match-
ing function.

One of the main drawback of our proposed
method is that, due to its improved expressive-
ness, it makes a model overfit easily. When evalu-
ated on small datasets such as Sentences Involving
Compositional Knowledge dataset (SICK; Marelli
et al., 2014) and Microsoft Research Paraphrase
Corpus (MSRP; Dolan and Brockett, 2005), we
observed performance degradation, partly due to
overfitting. Similarly, we observed that increas-
ing the number of interaction types M does not
guarantee consistent performance gain. We con-
jecture that these could be alleviated by applying
regularization techniques that control the sparsity
of interaction, but we leave it as future work.
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A Experimental Settings

A.1 Natural Language Inference

For all experiments, we used the Adam (Kingma
and Ba, 2015) optimizer with a learning rate 0.001
and halved the learning rate when there is no im-
provement in accuracy for one epoch. Each model
is trained for 10 epochs, and the checkpoint with
the highest validation accuracy is chosen as fi-
nal model. Sentences longer than 25 words are
trimmed to have the maximum length of 25 words,
and batch size of 64 is used for training.

For all experiments, we set the dimensional-
ity of sentence vectors to 300. 300-dimensional
GloVe (Pennington et al., 2014) vectors trained on
840 billion tokens® were used as word embeddings
and not updated during training. The number of
hidden units of the single-hidden layer MLP is set
to 1024.

Dropout (Srivastava et al., 2014) is applied to
word embeddings and the input and the output of
the MLP. The dropout probability is selected from
{0.10,0.15,0.20}. Batch normalization (Ioffe and
Szegedy, 2015) is applied to the input and the out-
put of the MLP.

Recurrent weight matrices are orthogonally ini-
tialized (Saxe et al., 2014), and the final lin-
ear projection matrix is initialized by sampling
from Uniform(—0.005,0.005). All other weights
are initialized following the scheme of He et al.
(2015).

A.2 Paraphrase Identification

For PI experiments, we used the same architec-
ture and training procedures as NLI experiments,
except the final projection matrix and heuristic
matching function. Also, we found that the PI task
is more sensitive to hyperparameters than NLI, so
we apply different dropout probabilities to the en-
coder network and to the classifier network. Both
values are selected from {0.10,0.15,0.20}. Each
model is trained for 15 epochs, and the checkpoint
with the highest validation accuracy is chosen as
final model.

®http://nlp.stanford.edu/data/glove.
840B.300d.zip



