YNU_AI1799 at SemEval-2018 Task 11: Machine Comprehension using
Commonsense Knowledge of Different model ensemble

QingXun Liu, HongDou Yao, Xiaobing Zhou*, Ge Xie
School of Information Science and Engineering
Yunnan University, Yunnan, P.R. China
*Corresponding author, zhouxb.cn@gmail.com

Abstract

In this paper, we describe a machine read-
ing comprehension system that participated in
SemEval-2018 Task 11: Machine Compre-
hension using commonsense knowledge. In
this work, we train a series of neural network
models such as multi-LSTM, BiLSTM, multi-
BiLSTM-CNN and attention-based BiLSTM,
etc. On top of some sub models, there are two
kinds of word embedding: (a) general word
embedding generated from unsupervised neu-
ral language model; and (b) position embed-
ding generated from general word embedding.
Finally, we make a hard vote on the predictions
of these models and achieve relatively good
result. The proposed approach achieves 8th
place in Task 11 with the accuracy of 0.7213.

1 Introduction

Machine Comprehension using Commonsense
Knowledge is a well-researched problem in NLP.
In order to simplify the task of the process, we
turn this task into text classification work and
use a deep learning neural network to fulfill it.
The method of deep learning models used in
text analysis has achieved numerous notable ad-
vances in recently years (e.g., (Breck et al., 2007),
(Yessenalina and Cardie, 2011) and (Socher et al.,
2011)). However, in most previous works, the
tasks are to apply a single model to a particular
data set task.

The single model is a vertical stack of multiple
hidden layers, which is not good for text analy-
sis and processing. The first drawback is the need
to consume more hardware resources, followed by
over-fitting and loss of feature information. So the
task here is to apply different structure sub models
to the same train-set. We train many classic sub
models with one layer on top of word embedding,
like LSTM, CNN, Attention,Attention+BiLSTM,
multi-BiILSTM+CNN and some other models

which are slightly different from the above mod-
els with different activation functions and differ-
ent layers inside the model. In each single model,
we use a flag to determine which embedding tool
is used or not.

Most of the deep learning involve word vectors
represented by neural language models ((Morin
and Bengio, 2005) , (Yih et al., 2011) and
(Mikolov et al., 2013)). Using the learned word
vectors for classification task will naturally in-
crease the effect. Word vectors are expressed as
a hidden-layer word vector of the specified di-
mension (1-of-V, here V is the vocabulary size),
the training methods can be found here'. In our
system, we introduce different word vectors: 100
billion words of Google News, Glove vectors of
100 dimensions and word vectors self-trained on
the basis of official task data. Finally, a hard
vote(the majority voting from result document)
is made on the results of those different models.
Many tasks often suffer from insufficient training
data. In this work, we parse external data from
CodaLab introduction data, including DeScript(?)
data, RKP(Regneri et al., 2010) data and OMCS
(Singh et al., 2002) data to trained embedding.

2 System Description

We treat this task as a classification process. First
we repeat the question and answer text, making it
match instance texts. The final number of samples
are same as the number of answers in the data-set.
After statistical analysis of the data-set, we treat
Instance texts, Question texts and Answers texts as
to a rational text length of words {wi,wa,...,wy}
in which n is the max length of a text. Here, the
length of Instance is controlled as 350, and the
length of Question is controlled as 14 as well as
Answer. Before that, we count the frequency of

"https://radimrehurek.com/gensim/models/word2vec.htm]

1038

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1038—1042
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics

occurrence of each word in the data-set, and use
this word frequency to create a dictionary, then
express each word in terms of frequency order of
corresponding word (Kim, 2014). Next, we train
word embeddding according to (Chiu et al., 2016),
and at the same time download the trained embed-
ding sets that have been trained?.

The ensemble model architecture, shown in fig-
ure 1, is an ensemble of many single models(We
call them sub models). Because each sub model
is independent of each other, their weights are
not shared and just use the same word embed-
ding when training each sub model. The process
of the whole ensemble model is carried out model
by model. First, each model is run independently,
and then the result file is saved. After running all
the independent models, the result files are taken
out and the final result is determined by the major-
ity vote. In model training, we use the early stop
mechanism (Sarle, 1995) to terminate the train-
ing of subsequent epoch when the overfitting is
appeared. At the same time, the data is shuffled
on every epoch. The core of our paper is based
on classic models, adding other network layers, so
that the independent models have their own struc-
ture. Next, are introduced the input structures of
the sub models.

model_1 —

[a[=)3[=]3)]

model_2 —»

08 pEg

model_n —>

A sample

subsequent actions

Position embedding layer

Figure 2: The input structure of the submodel

2https://github.com/xgli/word2vec-api

2.1 Similar input structures

Figure 2 shows the architecture of the sub models
input. The input part of all sub models uses this
structure. Within the structure, two flag variables
are used to control the use of word embedding.
One is whether to use the position embedding, and
the other is to control whether or not the trained
word embedding is used. From this structure, data
flow to the subsequent network layer such as the
classic model layer CNN, LSTM, BiLSTM and
Attention.

2.2 The merge layer

In order to combine three text feature information,
we have a merge layer in all of our sub models.
The merge layer of these sub models is almost
the same. Only the attention layer merge is dif-
ferent from other sub models. The merge of most
sub models first combines the instance matrix data
with the question in sum operation, while combin-
ing the matrix data with the answer, and finally
combining the two sets of matrix data in the dot
operation. However, in the sub model with Atten-
tion, merge layer combines the matrix data of the
three texts with dot operation. Next, we will focus
on two sub models using classical models,while
the rest of the other part of each sub models are
similar to the two models.

2.3 Based on multi-BiLSTM+CNN model

Long short-term memory (LSTM or BiLSTM) is
applied to text classification ((Liu et al., 2016) and
(Lai et al., 2015)). The Convolutional Neural Net-
works (CNN) is for local feature extraction (Le-
Cunet al., 1998). CNN can achieve good results in
the semantic analysis (Yih et al., 2014), and other
traditional NLP tasks (Collobert et al., 2011), es-
pecially in sentiment analysis and question clas-
sification (Kim et al., 2016). It is our novelty to
combine CNN with multiple layers of BiLSTM
with BiLSTM in front.

Here set the multi = 2, of course, it can be 3
or more. Each multi-BiLSTM internal implies a
dropout layer to prevent over-fitting (Srivastava
et al., 2014). Multi-BiLSTM is one of the core
layers in this model which takes an input sequence
of word embedding. Just like (Liu et al., 2016)
and (Lai et al., 2015), this layer runs on the data
of word embedding. After these three branches
running (Just as the three model layers in Figure
2), we make batch normalization and then merge

1039

them into CNN1D layer. Finally, we use the Soft-
max classifier to predict the results. Other sub
models that do not use Attention are similar to the
sub model structure, instead of replacing CNN1D
with other structures.

2.4 Based on Attention + BiLSTM model

Attention is mostly used for document categoriza-
tion (Yang et al., 2016).The model architecture
is different from the multi-BiLSTM+CNN archi-
tecture of word embedding layer. The structure
of this model is roughly: a word embedding in-
put structure, followed by attention layer which
include the merge layer. Next to the batch nor-
malization layer, BILSTM layer , Softmax layer.
We do a position embedding operation before in-
putting the word embedding into attention layer.
According to (Vaswani et al., 2017), the formula
for constructing Position Embedding is as follows:

{ P By = sin(p/10000%/4pos))

PEy; 1(y) = sin(p/10000%/%0%)

Here is to map the position p to the position vec-
tor of dpos dimension. The value of the i th ele-
ment of this vector is PE;(p). Word embedding
first goes through the position embedding layer
which is included in the architecture of the sub
model input. Then the feature data enters into at-
tention layer. In attention layer, weights and bias
are randomly added to position embedding and ex-
cess numbers are masked as zero. We do batch
normalization for the data coming out of attention
layer, then input them into BiLSTM. Similarly, the
results are obtained after Softmax layer.

3 Data Preparation

Although official data is regular, we have done
a further normalization. All data set used by
each model undergoes the following preprocess-
ing steps:

1) The texts were lowercased
2) Using NLTK to tokenize each text

3) Abbreviations:
We’re very careful about the abbreviation, as
’8” in ”it’s time for me to take her out.” is not
the same as ”’s” in "Tom’s dad ordered pizza
g

yesterday for the family.” We treat the first

examples | normalization
I'm Tam
n‘t not
does‘t does not
it's it is
that‘s that is
neighbor‘s neighbor
wouldn‘t would not
wont‘t will not

Table 1: normalization patterns.

as ”is,” and the second, of course, is an adjec-
tive. We restore those abbreviations in Table 1
to normal forms.

4) Removing other characters:
Removing other characters, such as “!”,“%
e g “@” Ete. Of course, not all other
symbols that seem useless are removed. Like
“$” are not removed.

4 Experiments and Results

In order to optimize our network, we use (Kingma
and Ba, 2014) optimizer on training model. All
our experiments have been developed using an
open source software library of Tensorflow with
CUDA enabled, and run on a computer with In-
tel Core(TM) i3 CPU 760 @2.8GHz, 8GB of
RAM and GeForce GTX960 GPU. Due to the
lack of hardware capacity, we do not run the en-
tire system in one time. Instead, we run sin-
gle model each time with different word embed-
dings. When we use the word embedding of
Google News 300d on some sub models, the sys-
tem gives memory exhausted, and we switch to a
smaller glove_27B_100d to run successfully. Ta-
ble 2 shows our results for various models. As it
can be seen from the table, ensemble results from
the more different models get better results when
other conditions are similar. Here we ensem-
ble these models: RNN, GRU, BiLSTM, multi-
BiLSTM+CNN and Attention+BiLSTM, based on
their high accuracy. The dropout probability is 0.6
in each model, and the initial learning rate is 0.01.

5 Conclusion

In this project, we ensemble a variety of struc-
turally different models to tackle this task. The

1040

model self trained glove_twitter 27B_100d GoogleNews_300d.bin
RNN — 0.6638 —
LSTM 0.7001 0.7042 0.6932
GRU — 0.6732 —
CNNID 0.5634 0.6324 —
CNN2D — 0.5683 —
CNN2D+LSTM — 0.5573 —
BiLSTM 0.6734 0.7135 —
Attention — 0.6731 0.6863
Attention+BiLSTM 0.6653 0.6943 0.6934
multi-BiLSTM+CNN 0.6725 0.6834 —
Combine to all models 0.6550 0.7213 0.6923

Table 2: Result for various models on task data set.

performance of a single model is poorer than the
ensemble model. And the bigger the difference
between the models, the higher performance the
ensemble model makes. Still our results are less
satisfying than top teams on the leaderboard. We
will adjust the model, improve the hardware con-
figuration of the computer, collect more external
data, and do more experiments to get a better re-
sult in the future.

Acknowledgments

This work was supported by the Natural Science
Foundation of China No.61463050, No.61702443,
No0.61762091, the NSF of Yunnan Province
No0.2015FB113, the Project of Innovative Re-
search Team of Yunnan Province.

References

Eric Breck, Yejin Choi, and Claire Cardie. 2007. Iden-
tifying expressions of opinion in context. In Inter-
national Joint Conference on Artificial Intelligence,
pages 2683-2688.

Billy Chiu, Gamal Crichton, Anna Korhonen, and
Sampo Pyysalo. 2016. How to train good word
embeddings for biomedical nlp. In Proceedings of
the 15th Workshop on Biomedical Natural Language
Processing, pages 166—174.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493-2537.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746—1751.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In AAAI, pages 2741-2749.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR).

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text
classification. In AAAI, volume 333, pages 2267—
2273.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278-2324.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016.
Recurrent neural network for text classification with
multi-task learning. In International Joint Confer-
ence on Artificial Intelligence, pages 2873-2879.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111-3119.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
Aistats, volume 5, pages 246-252.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with web
experiments. In Meeting of the Association for Com-
putational Linguistics, pages 979-988.

Warren S. Sarle. 1995. Stopped training and other
remedies for overfitting. In Proceedings of Sympo-
sium on the Interface, pages 352-360.

Push Singh, Thomas Lin, Erik T. Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open mind
common sense: Knowledge acquisition from the
general public. 2519(5):1223-1237.

1041

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2011, 27-31 July 2011, John Mcintyre Con-
ference Centre, Edinburgh, Uk, A Meeting of Sigdat,
A Special Interest Group of the ACL, pages 151-161.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929-1958.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In L., editor, Advances in Neural Informa-
tion Processing Systems 30, pages 5998—6008.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480-1489.

Ainur Yessenalina and Claire Cardie. 2011. Compo-
sitional matrix-space models for sentiment analy-
sis. In Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2011, 27-31 July
2011, John Mcintyre Conference Centre, Edinburgh,
Uk, A Meeting of Sigdat, A Special Interest Group of
the ACL, pages 172—-182.

Wen-tau Yih, Xiaodong He, and Christopher Meek.
2014. Semantic parsing for single-relation ques-
tion answering. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-

guistics (Volume 2: Short Papers), volume 2, pages
643-648.

Wen-tau Yih, Kristina Toutanova, John C Platt, and
Christopher Meek. 2011. Learning discriminative
projections for text similarity measures. In Proceed-
ings of the Fifteenth Conference on Computational
Natural Language Learning, pages 247-256.

1042

