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Abstract

This paper describes the system used and re-
sults obtained for team FOI DSS at SemEval-
2018 Task 1: Affect In Tweets. The team
participated in all English language subtasks,
with a method utilizing transfer learning from
LSTM nets trained on large sentiment datasets
combined with embeddings and lexical fea-
tures. For four out of five subtasks, the sys-
tem performed in the range of 92-95% of the
winning systems, in terms of the competi-
tion metrics. Analysis of the results suggests
that improved pre-processing and addition of
more lexical features may further elevate per-
formance.

1 Introduction

In the field of automatic emotion detection, many
contributions consider the issue of detecting pres-
ence of emotions (Liu, 2012). The task of de-
tecting intensity of emotion in a given text is
less studied, but is relevant to many applications
in fields such as e.g., brand management, public
health, politics, and disaster handling (Moham-
mad, 2016). When developing prediction sys-
tems, access to suitably annotated data is criti-
cal. Most annotated emotion and affect datasets
are categorical, but examples of sets annotated
with intensity or degree of emotional content in-
clude EmoBank (Buechel and Hahn, 2017a,b),
AFINN (Nielsen, 2011), the Pietro Facebook post
set (Preotiuc-Pietro et al., 2016), and the Warriner-
Kuperman set (Warriner et al., 2013). For tweets,
the Tweet Emotion Intensity Dataset (Mohammad
and Bravo-Marquez, 2017) has recently been pub-
lished, with more than 7000 tweets annotated with
emotion category and intensity.

This paper describes methods used and results
achieved with the FOI DSS contribution to the five
subtasks for English tweets of SemEval 2018 Task
1: Affect in Tweets (Mohammad et al., 2018).

The paper is organized as follows. A descrip-
tion of Task 1 is provided in Section 2. Sec-
tion 3 discusses the provided datasets. Section 4
describes the methods and system used to produce
predictions of scores and labels for all subtasks.
In Sections 5 and 6 results are presented and ana-
lyzed, and suggestions for improvements are out-
lined. Finally, concluding remarks are found in
Section 7.

2 Task formulation

Task 1 consisted of five subtasks, all regarding es-
timation of the mental state of a tweeter, based
on the tweeted text. Valence' intensity, as well
as emotion, and emotion intensity classification,
were covered. The subtasks are summarized be-
low:

1. Emotion intensity regression (EI-reg): For
a given tweet and emotion?, determine the in-
tensity of the emotion as a score € [0, 1].

2. Emotion intensity, ordinal classification
(EI-oc): For a given tweet and emotion?,
classify the tweet into one of four ordinal
classes of intensity.

3. Valence regression (V-reg): For a given
tweet, determine the intensity of valence as
a score € [0, 1].

4. Valence, ordinal classification (V-oc): For a
given tweet, classify it into one of seven ordi-
nal classes corresponding to levels of positive
and negative intensity.

5. Multi-label emotion classification (E-c):
For a given tweet and eleven emotions?, clas-
sify the tweet as neutral, or expressing one or
more of the emotions.

'The intrinsic attractiveness (positive valence) or averse-
ness (negative valence) of an event, object, or situation (Fri-
jda, 1986).

Zanger, joy, fear or sadness.

3anger, anticipation, disgust, fear, joy, love, optimism,
pessimism, sadness, surprise and trust.
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Subtask Train | Val. | Test
EI anger 1701 388 | 1002
EI fear 2252 | 389 | 986
EI joy 1616 | 290 | 1105
El sadness | 1533 397 | 975
v 1181 449 | 937
E-c 6838 886 | 3259

Table 1: Number of tweets in the datasets for different
subtasks. The sets for El-reg and EI-oc were identical,
as was also the case for V-reg and V-oc.

3 Data

The dataset made available for Task 1 was the
AIT Dataset (Mohammad and Kiritchenko, 2018).
For each subtask, labeled datasets for training and
validation were released for the prediction system
development phase. Intensity scores were roughly
normally distributed, and ordinal classes were de-
fined as intervals for the scores. Unlabeled test
data was later released for the evaluation phase.
Table 1 gives a brief overview of the data. Details
on the data and annotation can be found in (Mo-
hammad et al., 2018) and (Mohammad and Kir-
itchenko, 2018).

In addition to the test data, an unlabeled “mys-
tery” set of 16937 short texts was provided for
the regression subtasks. The task organizers asked
that participants in these subtasks use their exist-
ing systems to produce predictions for the mystery
set as well, and the results were used to perform
a bias analysis. This is further discussed in Sec-
tion 5.4.

4 Method

Initially, the team focused on Subtask 4 (V-reg).
Several different approaches were explored, and
evaluated using the official competition metric,
the Pearson Correlation Coefficient (PCC) with
gold ratings. The combination of methods found
to have the best performance on the V-reg task
was chosen. The approach is described in Sec-
tions 4.1 - 4.3. Contributions to Subtasks 1, 2,
3 and 5 were constructed by altering the final
stage model to fit each task, and tuning the hyper-
parameters for best performance.

4.1 Pre-processing

We performed some rudimentary pre-processing
of the tweets prior to feature extraction. Follow-
ing the findings reported in (Zhao, 2015) we ex-
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panded negations such as “can’t” and "n’t” etc.,
into “cannot” and “not”. The hashtag character #
was also removed and we replaced user names and
links with ”usr” and “http://url”, respectively. We
finally mapped unicoded emoticons into their as-
sociated emoticon text description *

4.2 Feature Extraction

The small amount of labeled data prevented us
from automatically discovering optimal features
for the different tasks. Instead, we utilized transfer
learning techniques (i.e., reusing a model trained
on a different but related task where more data is
available) and classical natural language process-
ing features. Three different methods were used
to extract features from the tweet sets; two us-
ing variants of Long Short-Term Memory (LSTM)
nets obtained by training on large sentiment
datasets and extracting the internal model states,
and one utilizing the Weka Affective Tweets pack-
age. The feature vectors from each of the meth-
ods described below were then concatenated to
form one 5265 dimensional feature vector for each
tweet.

4.2.1 Sentiment Neuron

In (Radford et al., 2017), the authors consider
the problem of predicting the next character in a
text given the preceding characters. More specifi-
cally, they predict next byte (each UTF-8 encoded
character constitutes one to four bytes) from the
previous bytes using a single layer multiplicative
LSTM (Krause et al., 2016) with 4096 states. The
model was trained using 82 million Amazon prod-
uct reviews amounting to 38 billion bytes of train-
ing data. The authors show state-of-the-art (or
close to state-of-the-art) sentiment classification
performance on four different datasets when train-
ing a logistic regression classifier with the model’s
states as feature vector. Because of the reported
strong predictive quality of the model’s state we
used that as one of the feature vectors for our
method. We used the authors code for feature ex-
traction available on github >,

4.2.2 Bidirectional-LSTM

Tweets can often be quite different from typical
text seen in novels, news, or product reviews.

“https://apps.timwhitlock.info/emoji/tables/unicode#block-
6a-additional-emoticons

Shttps://github.com/openai/generating-reviews-
discovering-sentiment



The short messages commonly contain intentional
misspelling to express affects (e.g., happpppyyy).
hashtags (e.g., #love), and emoticons (e.g., :-)).
One option to capture the specific characteristics
of tweets would be to fine-tune the sentiment neu-
ron model described in the previous section us-
ing twitter data. We did not explore this direc-
tion in this work. Instead, in an attempt to di-
rectly capture affects, we trained (from scratch) a
bidirectional LSTM on a sentiment labeled (two
classes; positive and negative sentiment) twitter
dataset ®. The dataset contains 1.5 million tweets
and we used 90% for training and 10% for vali-
dation. We used a bidirectional LSTM with 512
states in each direction (1024 in total). The input
characters were first mapped to integers and sub-
sequently fed to the embedding front-end (where
an integer to a dense 64 dimensional embedding
is learned) of the bidirectional LSTM. A dropout
of 50% was used during the training for the sen-
timent prediction. The model achieves approxi-
mately 85% classification accuracy on the valida-
tion set. Similar to the sentiment neuron’s multi-
plicative LSTM we use the bidirectional LSTM’s
state as a feature vector.

4.2.3 Weka Affective Tweets filters

A combination of tweet-level filters from the
Weka Affective Tweets package (Mohammad and
Bravo-Marquez, 2017) was used as the third part
of the feature extraction method. These filters pro-
duce embeddings and lexical features, e.g. counts
of positive and negative sentiment words, from
systems such as the NRC-Canada System’.

To evaluate contributions from different filters,
the final stage model (Section 4.3) was run using
their resulting feature vectors for the V-reg dataset
as input. For combinations of filters, the resulting
feature vectors were concatenated and run through
the final stage model. Details of this evaluation
can be found in Section 5.1

4.3 Final stage

For each of the different subtasks we trained a
fully connected neural network with two hidden
layers mapping the input feature vector (i.e., the
concatenation of the feature vectors described in
Sections 4.2.1 - 4.2.3) to the target value, class, or

Shttp://thinknook.com/twitter-sentiment-analysis-
training-corpus-dataset-2012-09-22/

"http://saifmohammad.com/WebPages/NRC-Canada-
Sentiment.htm
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classes. The activation function for the two hidden
layers was tanh and the activation functions for
the output layer were set to linear, softmax, and
sigmoid for the V-reg/El-reg, V-oc/El-oc, and E-c
subtasks, respectively.

The Adam optimizer (Kingma and Ba, 2015)
was used for the classification subtasks with cate-
gorical cross-entropy loss for the V-oc/El-oc sub-
tasks and binary cross-entropy loss for the E-c
subtask. For the regression subtasks of V-reg
and El-reg we used mean squared error as loss
function and the ADADELTA optimizer (Zeiler,
2012). However, the performance difference be-
tween Adam and ADADELTA was minor in our
regression subtasks.

We used L2-regularization on the parameters of
the hidden layers. For each subtask, the hyper-
parameters (i.e., the penalty and the layer sizes)
of the neural network were found by a grid search
evaluating the PCC (or the Jaccard similarity score
for E-c subtask) on the validation data.

The hyper-parameter search range was
[0.001,0.05] for the penalty and [5,80] for the
two layer sizes. Many configurations with quite
different hyper-parameter values resulted in very
similar scores. E.g., for the V-reg subtask the
conﬁgurations8 (0.03,10,15), (0.03,15,40), and
(0.0096,70,35) all resulted in PCCs in the range
0.841-0.846.

5 Results

In this section we present a performance analysis
of the set of features used, as well as results on the
different subtasks.

5.1 Feature evaluation

To assess the quality of the feature vectors de-
scribed in Section 4.2 we computed the PCC on
the V-reg subtask using the validation data. For
each set of features listed in Table 2 we performed
a hyper-parameter search to find the parameters
of the final stage model maximizing the PCC (cf.
Section 4.3).

As seen in Table 2 the features provided by the
Weka Affective Tweets package have the strongest
individual predictive power. From the Weka fil-
ters, the feature combination chosen to be included
in the combined method was Wg + Wgs + Wy,
which produced the highest PCC during evalua-
tion.

8configuration = (penalty, layer 1 size, layer 2 size)



Features PCC
Weka
TweetToEmbeddings (Wg)® 0.665
TweetToEmbeddings 400 (Wgso0) 1© | 0.702
TweetToSentiStrength (Wss) 0.675
TweetToLexicon (W) 0.790
TweetTolnputLexicon (W) 0.687
WE + Wss + WL 0.800
WE + Wss + WL+ Wi 0.797
We400 + Wss + WL 0.795
Sentiment Neuron (SN) 0.767
Bi-LSTM 0.738
SN + Bi-LSTM 0.818
Bi-LSTM + Wg + Wss + W 0.820
SN + Wg + Wss + WL 0.838
SN + Bi-LSTM + Wg + Wgs + Wy, 0.846

Table 2: V-reg validation set: PCC of valence inten-
sity score predictions with gold scores for the different
feature vector combinations.

Although the sentiment neuron is not trained
on Twitter specific data it still shows good perfor-
mance. The bidirectional LSTM has the weakest
performance but still has a positive impact on the
final score.

5.2 Results on validation and test data

The official competition metric was PCC for Sub-
tasks 1-4, but as Subtask 5 was a multi-label classi-
fication task, the metric used was multi label accu-
racy, or Jaccard similarity score. The PCC/Jaccard
similarity score for validation and test data for the
FOI DSS system is presented in Table 3. For the
regression tasks, the system’s performance on the
test data is close to the validation data results. For
the classification tasks, the gap between validation
and test scores is somewhat larger, indicating that
the model may be biased for the validation data.
The team’s ranking in different subtasks varied
from 6 (out of 46 and 35 teams, respectively) for
El-reg and V-oc, to 11 of 37 for El-oc. For Sub-
tasks 1,3,4, and 5 the scores of our system was in
the range of 92-95 % of the winning result on each
subtask. The weakest performance was observed
on Subtask 2 (EI-oc), with a PCC corresponding

°The TweetToEmbeddingsFeatureVector ~filter  us-
ing embeddings trained from the small default cor-
pus, yielding a 100-dimensional feature vector.
https://affectivetweets.cms.waikato.ac.nz. .

10The TweetToEmbeddingsFeatureVector filter using em-
beddings trained from the 10 million tweets of the Edinburgh
corpus (Petrovi¢ et al., 2010), yielding a 400-dimensional
feature vector.
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Subtask | Validation | Test | Baseline (Test)
El-reg 0.739 0.737 0.520
El-oc 0.636 0.590 0.394
V-reg 0.846 0.831 0.585
V-oc 0.818 0.777 0.509
E-c 0.554 0.544 0.442
Table 3: PCC/Jaccard similarity score on validation

and test data for the FOI DSS system for all English
subtasks of Task 1. The performance of the organiz-
ers’ SVM unigrams baseline model on the test data is
provided for comparison.

to 84 % of winning PCC. Figure 1 shows results
of the FOI DSS system compared to mean, me-
dian and max competition results for test data on
all English subtasks.

1
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Figure 1: PCC/Jaccard similarity score of test data
score and label predictions with gold scores and labels
for all English subtasks. FOI DSS results compared
to mean, median and max results for all participating
teams.

5.3 Error analysis on the V-reg subtask

As already mentioned, our method achieved a
PCC of 0.831 for the V-reg subtask on the test
data. Figure 2 shows the corresponding scatter
plot of the estimated and gold valence. To get
some insight into potential future improvements of
our system it is of interest to do analysis of tweets
having poor valence estimates.

Some of the tweets from the validation and test
datasets with large absolute error between the es-
timated and gold valence are listed in Table 4.
For the first validation set tweet our method pre-
dicted a fairly low valence whereas the gold score
is fairly high. A possible explanation could be that
our system has problems with the constructions
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Figure 2: Scatter plot showing the estimated versus
gold valence for the V-reg test dataset.

and concatenations such as B4, Thankful4all, and
ImWakingUpHappyNot. Especially not properly
splitting the last concatenation leaves the end of
the tweet “dreading the day” which should result
in a low valence.

The emoticon of the second validation tweet,
\xFO\x9F\x98\xA4, is interesting. It depicts a
face with steam coming out of the nostrils, which
clearly signals anger, but the mapping* we used
describes it (wrongly according to us) as “face
with look of triumph”. In the third tweet we
failed to map the emoticon \xFO\x9F\xA4\xA3
to words. The emoticon shows some sort of laugh-
ing creature.

The top two test set tweets in Table 4 had the
largest prediction errors for this set. They were
both predicted to have a lower valence than the
gold score. Interestingly, they both contain the
hashtag #blessed and include constructions using
the word not, where, if the negation is missed, the
sentiment of the tweet would change from positive
to negative. Possibly, our method has trouble cor-
rectly interpreting the negation and also has failed
to award enough importance to the positive sen-
timent word blessed. Since our pre-processing in-
volved removing hashtag character #, added inten-
sity expressed this way will not be captured.

Finally, the third test set tweet had a high pre-
dicted valence but a low gold score. This text con-
tains both negative words and phrases such as ner-
vous and I could puke, but also expresses laughter.
It would seem our method has deemed the latter
a marker of high valence, while a human reader

would probably interpret it as a nervous laughter,
thus low valence, considering the context provided
by the tweet as a whole.

5.4 Mystery dataset and bias analysis

An analysis for inapproperiate gender and race
bias in scoring and classifications was performed
by the task organizers for the “mystery” dataset
(Section 3). For most teams, the bias was small
(below 3%) but statistically significant, in part
likely due to biases in the AIT dataset. For the FOI
DSS system, the biases were below average for EI-
joy, El-sadness and valence, and 1% or less for all
datasets except gender bias for El-fear (2.3%). Bi-
ases in the datasets used to train our LSTM mod-
els as well as in the lexicons used to extract lexical
features may have contributed to biases in scoring
and classification.

6 Discussion

Designing high performance regression and clas-
sification algorithms using only a small amount
of labeled data is always a challenge. The vari-
ability in tweets is enormous, and thus, there is a
major risk of over-fitting when designing and tun-
ing the algorithms on the the very limited labeled
datasets provided for the competition. We used
transfer learning and classical NLP features to al-
leviate the problem. We believe further improve-
ments can be made by reducing the noise of the
dataset, features, and final prediction. In the fol-
lowing, we discuss some of these ideas.

6.1 Pre-processing extensions

The error analysis in Section 5.3 indicates that the
performance of our method could be improved by
extending and refining the pre-processing. Split-
ting concatenations into separate words and ad-
dressing some common abbreviations would be
one extension. Adjusting the emoticon lookup ta-
bles would be another.

6.2 Weka filter combinations: robustness

The combination of Weka Affective Tweets filters
used in the FOI DSS system, Wg + Wgs +W¢,
achieved the highest PCC during evaluation (Sec-
tion 5.1). However, as results for neural networks
are hard to reproduce, it should be examined what
combinations of filters on average perform bet-
ter. Initial findings from two such evaluations con-
ducted after the end of the competition are re-
ported in this section:
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Dataset Tweet Pred. | Gold
B4 I couldnt get out of bed or look in mirror Thankful4all 0303 | 0.734
the support I have recieved here ImWakingUpHappyNot dreading theday ’ ’

Validation | 3 ;14 4 half hour more \xFO\x9F\x98\xA4 #EXO 0.603 | 0.250
@TheEllenShow I follow you be your TV show keeps me laughing \xFO\x9F\xA4\xA3. 0461 | 0783
When you #startle your guest sitting on that couch...booo... ’ )
i’ll have my own apartment and not have to sneak alcohol into my dorm room
. 0.349 | 0.823
or worry about being loud #blessed
Test mum got out of a rlly bad car crash completely not injured and i found a rlly sentimental
. - . - 0.203 | 0.643
piece of jewellery i thought i’d lost #blessed
I’m so nervous I could puke + my body temp is rising ha ha ha ha ha 0.845 | 0.422

Table 4: Tweets with large prediction errors for the valence validation and test sets.

1. Wg400 : When used on their own, the Wg400
filter, which utilizes a much larger corpus!?,
outperforms Wg (Table 2). Therefore it is of
interest to compare performance of the two
filters combined with Wgg and Wi..

. Wir: Using its default lexicon'!, Wy pro-
duces 4-dimensional feature vectors. We
wanted to investigate whether contributions
from Wi on average increases performance.

The different vector combinations were input to
the final stage model (Section 4.3) for 486 differ-
ent hyper-parameter configurations, and the result-
ing PCC scores were compared. For 59% of the
configurations, Wg + Wgs +Wr still performed
better than Wgq09 + Wss + WL. It would there-
fore seem that the loss of features captured by the
larger WE400 vector is compensated for when com-
bining the smaller Wg vector with Wgs + WL

However, Wg + Wgs +Wr +Wy outperformed
Wg + Wgs +W, for 67% of the configurations. We
may therefore conclude that including the Wy fil-
ter would result in an overall more robust system.

6.3 Final stage: robustness

The purpose of the validation data is to measure
generalization of the method. However, given
the small dataset size there is as well an immi-
nent risk of over-fitting against the validation data
when searching for the optimal hyper-parameters.
The latter might be the reason for the performance
gaps between validation and test PCCs for the EI-
oc and V-oc subtasks in particular. Also, even
when using the same hyper-parameter settings, the

""'The NRC-AffectIntensity lexicon (Mohammad, 2017).
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performance (in terms of PCC/Jaccard similarity
score) of the final stage varies depending on the
random initialization of the network parameters.
Constructing an ensemble estimate, using multiple
final stage models for each subtask, could perhaps
be beneficial for the performance on the test set.

7 Conclusions

This paper presents the method and results for the
FOI DSS contribution to SemEval-2018 Task 1.
A major challenge with this task was the small
amount of available labeled data. We utilized tech-
niques such as transfer learning as well as clas-
sical NLP features. Our system used features
from Weka Affective Tweets combined with two
LSTM-state vectors. Fully connected neural net-
works with two hidden layers were used to map
the features into the target outputs for each of the
subtasks. For subtasks El-reg, V-reg, V-oc, and E-
¢ the PCC/Jaccard similarity score of our system
was in the range of 92-95 % of the winning result.
The weakest performance was observed on sub-
task El-oc. Initial error- and robustness analysis
indicates that performance might be enhanced by
improved pre-processing of the tweets, and by in-
cluding more lexical features. The difference be-
tween our results on validation and test data was
larger for the emotion intensity classification sub-
tasks than for the regression and emotion classifi-
cation subtasks, which would be interesting to in-
vestigate further.
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