
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 648–652,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

SentiME++ at SemEval-2017 Task 4: Stacking State-of-the-Art Classifiers
to Enhance Sentiment Classification

Enrico Palumbo**,*, Efstratios Sygkounas*, Raphaël Troncy* and Giuseppe Rizzo**

*EURECOM, Sophia Antipolis, France
**ISMB, Turin, Italy

Abstract

In this paper, we describe the participa-
tion of the SentiME++ system to the Se-
mEval 2017 Task 4A “Sentiment Analysis
in Twitter” that aims to classify whether
English tweets are of positive, neutral or
negative sentiment. SentiME++ is an en-
semble approach to sentiment analysis that
leverages stacked generalization to auto-
matically combine the predictions of five
state-of-the-art sentiment classifiers. Sen-
tiME++ achieved officially 61.30% F1-
score, ranking 12th out of 38 participants.

1 Introduction

The SemEval-2017 Task 4 (Rosenthal et al., 2017)
focuses on the classification of tweets into posi-
tive, neutral and negative sentiment classes. In
2015, the Webis system (Hagen et al., 2015)
showed the effectiveness of ensemble methods for
sentiment classification by winning the SemEval-
2015 Task 10 “polarity detection” challenge
through the combination of four classifiers that
had participated to previous editions of SemEval.
In 2016, we have combined the original public re-
lease of the Webis system with the Stanford Sen-
timent System (Socher et al., 2013) using bag-
ging, creating the SentiME system (Sygkounas
et al., 2016b,a) which won the ESWC2016 Se-
mantic Sentiment Analysis challenge. In bagging,
the predictions of the classifiers trained on differ-
ent bootstrap samples (bags) are simply averaged
to obtained a final prediction. In this paper, we
propose SentiME++, an enhanced version of the
SentiME system that combines the predictions of
the base classifiers through stacked generalization.
In Section 2, we detail our approach to stack a
meta-learner on top of five state-of-the-art senti-
ment classifiers to combine their predictions. In

Section 3, we describe the experimental setup of
our participation to SemEval and we report the re-
sults we obtained in Section 4. Finally, we con-
clude the paper in Section 5.

2 Approach

2.1 Preliminaries
SentiME++ is based on the predictions of five
state-of-the-art sentiment classifiers:
NRC-Canada: winner of SemEval 2013, trains
a linear kernel SVM classifier on a set of linguis-
tic and semantic features to extract sentiment from
tweets (Mohammad et al., 2013);
GU-MLT-LT: 2nd ranked at SemEval 2013, uses
a linear classifier trained by stochastic gradient de-
scent with hinge loss and elastic net regularization
for their predictions on a set of linguistic and se-
mantic features (Günther and Furrer, 2013);
KLUE: 5th ranked at SemEval 2013, feeds a
simple bag-of-words model into popular machine
learning classifiers such as Naive Bayes, Linear
SVM and Maximum Entropy (Proisl et al., 2013);
TeamX: winner of SemEval 2014, uses a variety
of pre-processors and features, fed into a super-
vised machine learning algorithm which utilizes
Logistic Regression (Miura et al., 2014);
Stanford Sentiment System: one of the sub-
systems of the Stanford NLP Core toolkit1, con-
tains the Stanford Tree Parser, a machine-learning
model that can parse the input text into Stanford
Tree format and the Stanford Sentiment Classi-
fier, which takes as input Stanford Trees and out-
puts the classification results. The output of the
Stanford Sentiment System belongs to one of five
classes (very positive, positive, neutral, negative,
very negative) which differs from the three classes
defined in SemEval. In a previous work (Sygk-
ounas et al., 2016b), we have tested different con-

1http://stanfordnlp.github.io/CoreNLP/

648

figurations for mapping the Stanford Sentiment
System classification to the three classes of the Se-
mEval competition and finally decided to use the
following strategy: very positive and positive are
mapped to positive, neutral is mapped to neutral
and negative and very negative are mapped to neg-
ative. The Stanford Sentiment System is used as
an off-the-self classifier and is not trained with Se-
mEval data.

2.2 Bootstrap samples
The first step in the SentiME++ approach con-
sists in training separately the first four classifiers,
using a uniform random sampling with replace-
ment (bootstrap sampling) to generate four dif-
ferent training sets Ti for each of the four sub-
classifiers from the initial training set T . In Sec-
tion 3, we report the results of the experiments that
we have conducted to determine the optimal size
of the samples Ti. Note that these samples are also
called ‘bags’. At this point, the SentiME system
combines the predictions on the models trained
on these bags using a simple average, while Sen-
tiME++ uses stacked generalization, as described
in the next section.

2.3 Stacking
Stacked Generalization (or simply stack-
ing) (Wolpert, 1992) is based on the idea of
creating an ensemble of base classifiers and then
combining them by means of a supervised classi-
fier, also called ‘meta-learner’. Stacking typically
leverages the complementarity among the base
classifiers to obtain a better global performance
than any of the individual models. The base
classifiers are trained separately and, for each
input, output their prediction. The meta-learner,
which is ‘stacked’ on top of the base classifiers,
is trained on the base classifiers’ predictions and
aims to correct the prediction errors of the base
classifiers. SentiME++ trains separately four
models, uses the Stanford Sentiment System
without training and uses these five outputs as
a feature vector for a stacked supervised learner
(Fig. 1). In detail, the SentiME++ approach works
can be divided in a training and a testing phase:
Training phase: (1) generate four bootstrap
samples Ti by sampling n tweets from the original
training set T , where n = s∗ |T | and s is a param-
eter that has to be fixed experimentally (2) train
separately NRC-CANADA, GU-MLT-LT, KLUE,
TeamX classifiers on the samples Ti and store the

trained models; (3) use the four trained models
and the Stanford Sentiment System to predict
the sentiment of each tweet t ∈ T , producing a
training set for the stacking layer Tstack; (4) Train
the meta-learner on Tstack.
Testing phase: (1) use the four trained models
and the Stanford Sentiment System to predict the
sentiment of each tweet t ∈ Ttest producing a test
set for the stacking layer Ttest; (2) test the trained
meta-learner on Ttest.
Note that the described approach is slightly
different from the standard procedure of Stacked
Generalization described in (Wolpert, 1992),
which is normally not based on bootstrap sam-
ples, but rather on disjoint splits of the training set.
This variation is mainly due to the will of building
SentiME++ as an incremental enhancement of
the existing SentiMe system, without disrupting
its base training mechanism. The meta-learner
that is used as default in SentiME++ is a Support
Vector Machine (SVM) with a Radial Basis
Function (RBF) kernel (Scholkopf et al., 1997).
Different choices are possible, but Support Vector
Machines are well-studied methods in machine
learning, able to be trained efficiently and to
limit over-fitting. This method depends on two
hyper-parameters, i.e. parameters that are not au-
tomatically learnt and that constitutes parameters
of the algorithm itself: the regularization constant
C and the parameter of the radial basis function γ.
In order to optimize the performance of the stack-
ing layer, we have chosen these parameters using
a grid-search cross validation approach (Hsu et al.,
2003). The process works as follows: (1) define
a range for hyper-parameters C ∈ [C1...Cm] and
γ ∈ [γ1...γn]; (2) train the model with all possible
pairs (Ci, γj); (3) compute scores with k-fold
cross validation for (Ci, γj) pair; (4) find the best
pair (Ci, γj) according to k-fold cross validation
score.
SentiME is implemented in Java and the stacking
process that characterizes SentiME++ is per-
formed by a python script working on top of the
results obtained by the SentiME system. The
source code is available on github2. It uses a
variety of lexicons (Table 1).

2https://github.com/
MultimediaSemantics/sentime

649

Figure 1: Illustration of the SentiME++ approach: bootstrap samples (bags) are generated to train four
state-of-the-art sentiment classifiers, the Stanford System is used without training and their predictions
are used as a feature vector for a meta-learner.

Lexicon # of Words and phrases Classifiers
AFINN-111 2477 TeamX

Bingliu 6800 NRC-Canada,TeamX
Hashtag 16,862 unigrams NRC-Canada

NRC-emotion-lexicon-v0.92 14,182 unigrams NRC-Canada,TeamX
Sentiment140 62,468 unigrams NRC-Canada,TeamX

SentiWordNet 3.0.0 155.287 NRC-Canada,GU-MLT-LT,TeamX
SentiStrength 16,000 social web texts KLUE

Table 1: Lexicons used by each sub-classifier included into SentiME++

3 Experimental Setup

In this section, we describe the experimental setup
of the SentiME++ system for the participation to
the SemEval2017 Task4A challenge.

3.1 Bootstrap samples size

One of the parameters of the SentiME++ model
is the size of the bootstrap samples Ti. Different
sampling sizes have been experimented, ranging
from 33% to 175% of the size of the initial training
set T . In order to determine an optimal size, we
have tested the SentiME bagging approach, which
simply averages the predictions of the base clas-
sifiers, on the SemEval2013-test-B dataset train-
ing the models with different random extractions
of the SemEval2013-train+dev-B dataset. The ex-
periment was repeated three times to mitigate the
randomness due to the random extractions and we
observed that a 150% size3 led to the best per-

3Note that this implies that there are duplicates among the
training examples

formance on SemEval2013-test-B dataset (Sygk-
ounas et al., 2016a).

3.2 Encoding categorical features
In order to use the predicted sentiment classes as
features for a meta-learner in the stacking layer,
it is necessary to specify an encoding scheme,
which allows the system to interpret the class val-
ues ‘Positive’, ‘Neutral’ and ‘Negative’. These
values could be simply mapped to integers 0, 1, 2,
but the meta-learner, expecting continuous or bi-
nary inputs, would interpret it as an ordered se-
quence of real values. To avoid this, we use a
one-hot encoding scheme, i.e. m categorical val-
ues are turned into a m dimensional binary vec-
tor where only one element at the time is active.
In this specific case, the encoding that we have
used is: ‘positive’=[0, 0, 1], ‘neutral’=[0, 1, 0],
‘negative’=[1, 0, 0].

3.3 Hyper-parameters optimization

In order to optimize the performance of the SVM
meta-learner, we have performed the grid-search

650

cross validation described in Section 2 on the
SemEval2013-train+dev-B dataset using 10-folds.
The experiment has been performed using as a
range an array of 30 logarithmically spaced val-
ues for γ from 10−9 to 103 and for C from 10−2

to 1010. The best obtained (C, γ) pair, i.e. the
pair producing the best prediction score, which
has been used for the participation to the challenge
is: (C, γ) = (0.174, 0.028). The implementation
of the SVM classifier and of the grid-search cross
validation procedure has been carried out using the
python library scikit-learn4.

4 Results

We started our experiments by training the
system on different combinations of SemEval
datasets, thus producing different trained mod-
els: model 1: SemEval2013-train+dev; model
2: model 1 + SemEval2013-test + SemEval2014-
test + Twitter2014-sarcasm + SemEval2015-train
+ SemEval2015-test; model 3: model 2 +
SemEval2016-dev + SemEval2016-test.

In order to compare the performance of these
different trained models, we have chosen as a
test set the SemEval2016-test dataset, as it is the
largest in size (33k tweets) and the most recent of
SemEval test sets. The results obtained from this
experiment are illustrated in Table 2. We observe

Model 1 Model 2 Model 3
SentiME++ 65.69 71.24 94.80

SentiME 64.35 70.23 86.87

Table 2: Comparison among trained models on
SemEval2016-test dataset for SentiME and Sen-
tiME++ according to F1 scores

that for all models, SentiME++ performs better
than SentiME, proving the efficiency of stacked
generalization with respect to bagging for com-
bining the predictions of classifiers. For Model
1 and Model 2 the difference is around 1% and
for Model 3 around 8%. Model 2 performs about
6% better than Model 1: this can be explained by
the size of the training set which is bigger. Model
3 achieves the highest performance but the test
dataset is part of the training dataset. While be-
ing aware that this introduces a bias in this eval-
uation, we also see that using more training data
enhances the performance of the system and thus

4http://scikit-learn.org/stable/

we opt for using SentiME++ with Model 3 for the
final submission. Being the process of bootstrap
sampling stochastic, we ran the system four times
and computed the F1-score on the SemEval2017
development dataset and, after the release of the
gold standard for the test set, on the SemEval2017
test dataset (Tab. 3). Run 4 has been submitted as

SentiME++ Run 1 Run 2 Run 3 Run 4
Dev 84.63 86.15 85.13 86.16
Test 60.70 60.90 63.40 61.30

Table 3: Comparison among runs on
SemEval2017-dev and SemEval2017-test dataset
for SentiME++ according to F1 scores.

it was the best performing on the development set,
but, a posteriori, we can observe that Run 3 per-
forms better on the test set. We also observe a sig-
nificant performance drop from the development
to the test set. We believe that this might be due
to the marked difference in the category distribu-
tions of the tweets in the two datasets (see Tab.4 in
(Rosenthal et al., 2017)). The best SentiME++ run
at SemEval2017 Task 4 Sub-Task A would rank
8th out of 38 participants.

5 Conclusion

In this paper, we have presented SentiME++, a
sentiment classifier that combines the predictions
of five state-of-the-art systems through stacking.
SentiME++ achieved officially 61.30% F1-score,
ranking 12th out of 38 participants. We have
shown how stacking can improve the combination
of the classifiers with respect to bagging, imple-
mented in the previous version of SentiME, eval-
uating it on SemEval2017 Challenge datasets. We
have described an experimental procedure to de-
termine an appropriate size of the bootstrap sam-
ples and optimize hyper-parameters of the meta-
learner. In general, we provide a further evidence
of the power of the ensemble approach applied to
sentiment analysis. As a future work, we plan to
improve the bootstrap sampling process by taking
into account the class distributions of the tweets, to
determine the bag sizes directly using SentiME++,
to include more base classifiers and experiment
different meta-learners.

Acknowledgments

This work was partially supported by the innova-
tion activity PasTime (17164) of EIT Digital.

651

References
Tobias Günther and Lenz Furrer. 2013. GU-MLT-LT:

Sentiment Analysis of Short Messages using Lin-
guistic Features and Stochastic Gradient Descent. In
7th International Workshop on Semantic Evaluation
(SemEval).

Matthias Hagen, Martin Potthast, Michel Büchner, and
Benno Stein. 2015. Webis: An Ensemble for Twitter
Sentiment Detection. In 9th International Workshop
on Semantic Evaluation (SemEval).

Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al.
2003. A practical guide to support vector clas-
sification. http://www.csie.ntu.edu.tw/
˜cjlin/papers/guide/guide.pdf.

Yasuhide Miura, Shigeyuki Sakaki, Keigo Hattori, and
Tomoko Ohkuma. 2014. TeamX: A Sentiment Ana-
lyzer with Enhanced Lexicon Mapping and Weight-
ing Scheme for Unbalanced Data. In 8th Interna-
tional Workshop on Semantic Evaluation (SemEval).

Saif Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. NRC-Canada: Building the State-of-the-
Art in Sentiment Analysis of Tweets. In 7th Interna-
tional Workshop on Semantic Evaluation (SemEval).

Thomas Proisl, Paul Greiner, Stefan Evert, and Besim
Kabashi. 2013. KLUE: Simple and robust meth-
ods for polarity classification. In 7th International
Workshop on Semantic Evaluation (SemEval).

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
SemEval-2017 Task 4: Sentiment Analysis in Twit-
ter. In 11th International Workshop on Semantic
Evaluation (SemEval). Vancouver, Canada.

Bernhard Scholkopf, Kah-Kay Sung, Christopher JC
Burges, Federico Girosi, Partha Niyogi, Tomaso
Poggio, and Vladimir Vapnik. 1997. Comparing
support vector machines with gaussian kernels to ra-
dial basis function classifiers. IEEE transactions on
Signal Processing 45(11):2758–2765.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive Deep Mod-
els for Semantic Compositionality Over a Sentiment
Treebank. In Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Efstratios Sygkounas, Giuseppe Rizzo, and Raphaël
Troncy. 2016a. A Replication Study of the Top
Performing Systems in SemEval Twitter Sentiment
Analysis. In 15th International Semantic Web Con-
ference (ISWC).

Efstratios Sygkounas, Giuseppe Rizzo, and Raphaël
Troncy. 2016b. Sentiment Polarity Detection From
Amazon Reviews: An Experimental Study. In 13th

European Semantic Web Conference (ESWC), Se-
mantic Sentiment Analysis Challenge. pages 108–
120.

David H. Wolpert. 1992. Stacked generalization. Neu-
ral networks 5(2):241–259.

652

