
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 453–456,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

ECNU at SemEval-2017 Task 7: Using Supervised and Unsupervised
Methods to Detect and Locate English Puns

Yuhuan Xiu1, Man Lan1,2∗, Yuanbin Wu1,2

1Department of Computer Science and Technology,
East China Normal University, Shanghai, P.R.China

2Shanghai Key Laboratory of Multidimensional Information Processing
51164500032@stu.ecnu.edu.cn
mlan,ybwu@cs.ecnu.edu.cn

Abstract

This paper describes our submissions to
task 7 in SemEval 2017, i.e., Detection and
Interpretation of English Puns. We par-
ticipated in the first two subtasks, which
are to detect and locate English puns re-
spectively. For subtask 1, we presented a
supervised system to determine whether or
not a sentence contains a pun using simi-
larity features calculated on sense vectors
or cluster center vectors. For subtask 2,
we established an unsupervised system to
locate the pun by scoring each word in the
sentence and we assumed that the word
with the smallest score is the pun.

1 Introduction

A pun is a form of wordplay in which one signifier
(e.g., a word or phrase) suggests two or more
meanings by exploiting polysemy, or phonological
similarity to another signifier, for an intended
humorous or rhetorical effect. The study of puns
can be seen as a respectable research topic in
traditional linguistics and the cognitive sciences.

Semeval 2017 task 7(Miller et al., 2017) con-
tains three subtasks, i.e., pun detection, pun loca-
tion, and pun interpretation. And we participated
in the first two subtasks. The detection and
location of English puns are to determine whether
or not a sentence contains a pun and which word
is a pun respectively, which differ from traditional
word sense disambiguation (WSD). WSD is to
determine an exact meaning of the target word
in the given context. However, WSD algorithms
could provide the lexical-semantic understanding
for pun detection and location. And we adopted a
knowledge-based WSD algorithm to obtain possi-
ble senses1 for each word in the sentence.

1The sense is the gloss provided by WordNet

There are two types of puns: some are homo-
graphic puns and the others are heterographic pun-
s. A homographic pun exploits distinct meanings
of the same written word, and a heterographic pun
exploits distinct meanings of the similar but not
exactly the same spoken word. The organizer-
s provided two test datasets about homographic
puns and heterographic puns respectively for each
subtask. Since they did not provide official train-
ing datasets, we collected our own positive sam-
ples(each sentence contains a pun) from the Pun
of the Day website2, which conclude 60 homo-
graphic puns and 60 heterographic puns. Besides,
we also assembled a raw dataset of 120 negative
samples(sentences that do not contain puns) from
the Internet. Then, we combined 120 negative
samples with 60 homographic puns or 60 hetero-
graphic puns into homographic or heterographic
training dataset. Then, we did the same data
preprocessing for both training and test dataset-
s. Firstly, we performed part-of-speech(POS)
tagging using Stanford CoreNLP tools(Manning
et al., 2014). Secondly, we removed the stop
words in sentences. The words produced after this
series of processing are denoted as target words
for each sentence.

Since there are two different puns, we adopted
different methods for them to detect and locate
English puns. For homographic puns, we calculat-
ed the semantic similarity between sense vectors
of each target word in the sentence to obtain a
vector representation of a sentence and score each
target word in the sentence, and for heterographic
puns, we computed the semantic similarity be-
tween cluster center vectors of each sentence for
the same purpose.

2http://www.punoftheday.com/

453



2 Homographic Puns Detection and
Location

To detect and locate homographic puns, we per-
formed exploratory analysis on training dataset.
We found that the degree of semantic similarity
between two meanings of a pun is supposed not
to be high, where the semantic similarity between
meanings is measured by calculating the distance
between sense vectors.

(Miller and Turković, 2016) makes a case for
research into computational methods for detection
of puns in running context. Inspired by their work,
for subtask 1, we presented a supervised system
using similarity features which are calculated on
sense vectors of each target word to create each
target word vector, and to obtain the vector rep-
resentation of the sentence. For subtask 2, we
located the pun by scoring each target word in the
sentence.

2.1 Pun Detection

This subtask is to determine whether or not a
given sentence contains a pun. To address this
subtask, we performed the process that consists of
the following steps:

• For each target word in the sentence, we
adopted Simplified Lesk algorithm(Kilgarriff
and Rosenzweig, 2000) with respect to its
POS to select the possible senses. Simplified
Lesk disambiguates a word by examining the
definitions3 and selecting the single sense
with the highest overlap score4. In our
case, we selected the possible senses which
overlap scores are higher than or equal to the
second highest overlap score.

• In order to obtain the sense vector for each
sense, we used 300-dimensional word vec-
tors which are pre-trained Google word vec-
tors downloaded from Internet5 to represent
each word in the sense and the simple min,
max, average pooling strategies were adopted
to concatenate sense vector representations
with dimensionality of 900.

3In our implementation, the definitions are formed by
concatenating the synonyms, gloss, and example sentences
provided by WordNet

4Overlap score is the number of words in common with
the context

5https://code.google.com/archive/p/word2vec

• For each target word in the sentence, we
calculated the similarity between its sense
vectors using six kernel functions, i.e., co-
sine similarity, manhattan distance, euclidean
distance, pearsonr distance, Spearman’s rho
distance and sigmoid function. Note that, the
instruction of sigmoid function is : Firstly,
compute the dot product of two vectors to
obtain the value of K. Secondly, update K by
K=tanh(K/D+1), where D is the dimension of
the vector. Finally, we denote K as the simi-
larity score calculated by sigmoid function.

• For each target word in the sentence, we
combined each minimum score calculated
by each kernel function into target word
vector(6-dimensional).

• In order to obtain the sentence vector(18-
dimensional), we simply adopted the min,
max, mean pooling strategies on all target
words in the sentence.

we explored two supervised machine learning
algorithms to build the classifiers: AdaBoost(AB)
and RandomForest(RF) both implemented in
scikit-learn tools6.

2.2 Pun Loaction
This subtask is to decide which word in the sen-
tence is the pun. We scored each target word by
averaging the elements of its target word vector
described in section 2.1. Finally, we assumed that
the word with the smallest score is a homographic
pun.

3 Heterographic Puns Detection and
Location

A heterographic pun corresponds to another word
with similar spoken but distinct meaning. That is
different from a homographic pun, which exploits
distinct meanings of exactly one word. There-
fore, we adopted different methods for hetero-
graphic puns. Through an artificial analysis on
heterographic puns, we found that the original
meaning of the heterographic pun differs greatly
from the meanings of other words in the sentence.
Therefore, we clustered all words in training and
test datasets in order to cluster words with high
degree of semantic similarity into the same cluster.
Firstly, we used pre-trained Google word vectors

6http://scikit-learn.org/stable

454



to represent each word. Secondly, we clustered
those word vectors into 100 clusters using k-
means(k=100) clustering algorithm. Finally, we
obtained a cluster center vector(300-dimensional)
for each cluster by averaging the word vectors
belonging to this cluster. Moreover, the semantic
similarity between words in the sentence is mea-
sured by calculating the distance between cluster
center vectors.

For subtask 1, we presented a supervised system
using similarity features which are calculated on
cluster center vectors to represent a sentence. For
subtask 2, we selectively scored target word in the
sentence.

3.1 Pun Detection
To address this subtask, we used the following two
steps to implement our approach.

• We clustered the target words in a sentence
into several clusters. If the number of clusters
of all taget words in a sentence is exactly
one, we assumed that this sentence does
not contain a pun. If not, we calculated
the similarity between those cluster center
vectors using the six kernel functions adopted
in section 2.1.

• We took the min, max, and mean scores
calculated by each kernel function as a
vector representation(18-dimensional) of the
sentence.

we also explored two same classification algo-
rithms as for homographic puns detection.

3.2 Pun Loaction
To locate the pun in the sentence, we split the
location process into three steps.

• We calculated the similarity scores between a
cluster center and other cluster centers using
the six kernel functions to find the outlier
cluster, then we computed the average value
of those similarity scores as a score for each
cluster center. We chose the cluster center
with the smallest score as the outlier cluster.

• If there is only one word in the outlier cluster,
we selected this word as a pun. If not, for
each candidate word, we calculated the simi-
larity scores between the top-sense vector7 of

7Top-sense is the definition of top-scoring synset returned
by Simplified Lesk algorithm and we used the method
described in Section 2.1 to obtain top-sense vector

it and every cluster center except the outlier
one using the six kernel functions. Finally,
We calculated the average value of these
similarity scores as a score for each candidate
word.

• We supposed that the word with the smallest
score is a heterographic pun.

Particularly, if the number of clusters of all
target words in a sentence is less than three, we
could not find the outlier cluster. Therefore we
calculated the similarity scores between top-sense
vectors of target words in the sentence. We scored
each target word by averaging all the similarity
scores that are relevant to that target word.

4 Experiments

4.1 Datasets
Although organizers did not provide the training
datasets, we collected our own training datasets.
Table 1 shows the statistics of the datasets we used
in our experiments.

Pun Dataset Positive Negative Total

homographic training 60(33%) 120(67%) 180
test 1,607(71%) 643(29%) 2,250

heterographic training 60(33%) 120(67%) 180
test 1,271(71%) 509(29%) 1,780

Table 1: Statistics of datasets in training and test
data. The number in brackets are the percentages
of different classes in each dataset.

4.2 Evaluation Metrics
For both subtask 1 and 2, the three widely-used
evaluation measures precision(P), recall(R) and
F1 are adopted. Moreover, for subtask 1, ac-
curacy(Acc) is also included and for subtask 2,
coverage(C) is used. Coverage is defined as the
ratio of sentence for which a location assignment
was attempted.

4.3 Experiment on Training Data For
Subtask 1

Table 2 and 3 show the results of different al-
gorithms of subtask 1 on homographic and het-
erographic training datasets respectively. The
5-fold cross validation is performed for system
development. From Table 2 and Table 3, we
find that AdaBoost outperforms RandomForest
algorithm and the ensemble method performed
best on homographic pun. Therefore we chose the

455



ensemble classifier for homographic pun and the
AdaBoost algorithm for heterographic pun.

Method Algorithm P R Acc F1

Single AB 0.7945 0.6836 0.6667 0.7349
RF 0.7814 0.6733 0.6346 0.7233

Ensemble AB+RF 0.8013 0.6955 0.6835 0.7747

Table 2: Results of subtask 1 on homographic
training dataset.

Method Algorithm P R Acc F1

Single AB 0.8401 0.8233 0.8833 0.8316
RF 0.7107 0.4833 0.77.22 0.57.59

Ensemble AB+RF 0.8880 0.4500 0.8056 0.5973

Table 3: Results of subtask 1 on heterographic
training dataset.

4.4 Results and Discussion on Test Data
Table 4 and Table 5 show the results of our systems
and the top-ranked systems provided by orga-
nizers for subtask 1 and subtask 2 respectively.
Compared with the top ranked systems, there is
much room for improvement in our work. The
reason for the poor performance may be that the
constructing method of sense vectors is simple and
straightforward, which neglects the word sequence
and the sentence structure of the sense. We find
that detecting puns at the sentence level is more
effective than locating puns at the word level, and
our systems performed better on heterographic
puns.

Pun System(rank) P R Acc F1

Homographic

ECNU(6) 0.7127 0.6474 0.5628 0.6785
PunFields(1) 0.8091 0.7785 0.7044 0.7900

Duluth(2) 0.7832 0.8724 0.7364 0.8254
UWAV(3) 0.7806 0.6067 0.5973 0.6828

Heterographic

ECNU(2) 0.7807 0.6761 0.6333 0.7247
Idiom Savant(1) 0.8704 0.8190 0.7837 0.8439

N-Hance(3) 0.7725 0.9300 0.7545 0.8440

Table 4: Performance of our systems and the top-
ranked(ranked by P) systems. The numbers in the
brackets are the official ranking

5 Conclusion

In this paper, we presented systems to detect and
locate a pun in the sentence on both homographic
and heterographic puns datasets. For homographic
puns, we calculated the semantic similarity be-
tween sense vectors of each target word in the
sentence to obtain its sentence vector and score
each target word. And for heterographic puns, we

Pun System(rank) C P R F1

Homographic

ECNU(8) 1.0000 0.3373 0.3373 0.3373
Idiom Savant(1) 0.9988 0.6636 0.6627 0.6631
UWaterloo(2) 0.9994 0.6526 0.6521 0.6523

Fermi(3) 1.0000 0.5215 0.5215 0.5215

Heterographic

ECNU(4) 1.0000 0.5681 0.5681 0.5681
UWaterloo(1) 0.9976 0.7973 0.7954 0.7964

Idiom Savant(2) 1.0000 0.6845 0.6845 0.6845
N-Hance(3) 0.9882 0.6592 0.6515 0.6553

Table 5: Performance of our systems and the top-
ranked(ranked by P) systems. The numbers in the
brackets are the official ranking

computed the semantic similarity between cluster
center vectors of each sentence for the same pur-
pose. In the future, we will explore the requisite
problem of pun interpretation, where the objection
is to determine two senses of the pun.

Acknowledgements

This research is supported by grants from Science
and Technology Commission of Shanghai Munici-
pality(14DZ2260800 and 15ZR1410700), Shang-
hai Collaborative Innovation Center of Trustwor-
thy Software for Internet of Things (ZF1213) and
NSFC (61402175).

References
Adam Kilgarriff and Joseph Rosenzweig. 2000.

Framework and results for english senseval. Com-
puters and the Humanities 34(1):15–48.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David
McClosky. 2014. The stanford corenlp natural
language processing toolkit. In ACL (System
Demonstrations). pages 55–60.

Tristan Miller, Christian F. Hempelmann, and Iryna
Gurevych. 2017. SemEval-2017 Task 7: Detection
and interpretation of English puns. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017).

Tristan Miller and Mladen Turković. 2016. Towards
the automatic detection and identification of english
puns. The European Journal of Humour Research
4(1):59–75.

456


