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Abstract

This paper describes the Duluth system

that participated in SemEval-2017 Task 6

#HashtagWars: Learning a Sense of Hu-

mor. The system participated in Subtasks

A and B using N-gram language models,

ranking highly in the task evaluation. This

paper discusses the results of our system

in the development and evaluation stages

and from two post-evaluation runs.

1 Introduction

Humor is an expression of human uniqueness

and intelligence and has drawn attention in di-

verse areas such as linguistics, psychology, phi-

losophy and computer science. Computational

humor draws from all of these fields and is

a relatively new area of study. There is

some history of systems that are able to gener-

ate humor (e.g., (Stock and Strapparava, 2003),

(Özbal and Strapparava, 2012)). However, hu-

mor detection remains a less explored and chal-

lenging problem (e.g., (Mihalcea and Strapparava,

2006), (Zhang and Liu, 2014), (Shahaf et al.,

2015), (Miller and Gurevych, 2015)).

SemEval-2017 Task 6 (Potash et al., 2017) also

focuses on humor detection by asking participants

to develop systems that learn a sense of humor

from the Comedy Central TV show, @midnight

with Chris Hardwick. Our system ranks tweets ac-

cording to how funny they are by training N-gram

language models on two different corpora. One

consisting of funny tweets provided by the task

organizers, and the other on a freely available re-

search corpus of news data. The funny tweet data

is made up of tweets that are intended to be hu-

morous responses to a hashtag given by host Chris

Hardwick during the program.

2 Background

Training Language Models (LMs) is a straight-

forward way to collect a set of rules by utilizing

the fact that words do not appear in an arbitrary

order; we in fact can gain useful information about

a word by knowing the company it keeps (Firth,

1968). A statistical language model estimates the

probability of a sequence of words or an upcom-

ing word. An N-gram is a contiguous sequence of

N words: a unigram is a single word, a bigram is a

two-word sequence, and a trigram is a three-word

sequence. For example, in the tweet

tears in Ramen #SingleLifeIn3Words

“tears”, “in”, “Ramen” and “#Sin-

gleLifeIn3Words” are unigrams; “tears in”,

“in Ramen” and “Ramen #SingleLifeIn3Words”

are bigrams and “tears in Ramen” and “in Ramen

#SingleLifeIn3Words” are trigrams.

An N-gram model can predict the next word

from a sequence of N-1 previous words. A tri-

gram Language Model (LM) predicts the condi-

tional probability of the next word using the fol-

lowing approximation:

P (wn|wn−1
1 ) ≈ P (wn|wn−2, wn−1) (1)

The assumption that the probability of a word

depends only on a small number of previous words

is called a Markov assumption (Markov, 2006).

Given this assumption the probability of a sen-

tence can be estimated as follows:

P (wn
1 ) ≈

n∏
k=1

P (wk|wk−2, wk−1) (2)

In a study on how phrasing affects memorabil-

ity, (Danescu-Niculescu-Mizil et al., 2012) take a

language model approach to measure the distinc-

tiveness of memorable movie quotes. They do this
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by evaluating a quote with respect to a “common

language” model built from the newswire sec-

tions of the Brown corpus (Kucera and Francis,

1967). They find that movie quotes which are less

like “common language” are more distinctive and

therefore more memorable. The intuition behind

our approach is that humor should in some way be

memorable or distinct, and so tweets that diverge

from a “common language” model would be ex-

pected to be funnier.

In order to evaluate how funny a tweet is, we

train language models on two datasets: the tweet

data and the news data. Tweets that are more prob-

able according to the tweet data language model

are ranked as being funnier. However, tweets that

have a lower probability according to the news lan-

guage model are considered the funnier since they

are the least like the (unfunny) news corpus. We

relied on both bigrams and trigrams when training

our models.

We use KenLM (Heafield et al., 2013) as our

language modeling tool. Language models are

estimated using modified Kneser-Ney smoothing

without pruning. KenLM also implements a back-

off technique so if an N-gram is not found, KenLM

applies the lower order N-gram’s probability along

with its back-off weights.

3 Method

Our system1 estimated tweet probability using N-

gram LMs. Specifically, it solved the comparison

(Subtask A) and semi-ranking (Subtask B) sub-

tasks in four steps:

1. Corpus preparation and pre-processing: Col-

lected all training data into a single file. Pre-

processing included filtering and tokeniza-

tion.

2. Language model training: Built N-gram lan-

guage models using KenLM.

3. Tweet scoring: Computed log probability for

each tweet based on trained N-gram language

model.

4. Tweet prediction: Based on the log probabil-

ity scores.

• Subtask A – Given two tweets, compare

and predict which one is funnier.

1https://xinru1414.github.io/HumorDetection-
SemEval2017-Task6/

• Subtask B – Given a set of tweets associ-

ated with one hashtag, rank tweets from

the funniest to the least funny.

3.1 Corpus Preparation and Pre-processing

The tweet data was provided by the task orga-

nizers. It consists of 106 hashtag files made up

of about 21,000 tokens. The hashtag files were

further divided into a development set trial dir

of 6 hashtags and a training set of 100 hashtags

train dir. We also obtained 6.2 GB of English

news data with about two million tokens from the

News Commentary Corpus and the News Crawl

Corpus from 2008, 2010 and 20112. Each tweet

and each sentence from the news data is found on

a single line in their respective files.

3.1.1 Preparation

During the development of our system we trained

our language models solely on the 100 hashtag

files from train dir and then evaluated our per-

formance on the 6 hashtag files found in trial dir.

That data was formatted such that each tweet was

found on a single line.

3.1.2 Pre-processing

Pre-processing consists of two steps: filtering and

tokenization. The filtering step was only for the

tweet training corpus. We experimented with vari-

ous filtering and tokenziation combinations during

the development stage to determine the best set-

ting.

• Filtering removes the following elements

from the tweets: URLs, tokens starting with

the “@” symbol (Twitter user names), and to-

kens starting with the “#” symbol (Hashtags).

• Tokenization: Text in all training data was

split on white space and punctuation

3.2 Language Model Training

Once we had the corpora ready, we used the

KenLM Toolkit to train the N-gram language mod-

els on each corpus. We trained using both bigrams

and trigrams on the tweet and news data. Our lan-

guage models accounted for unknown words and

were built both with and without considering sen-

tence or tweet boundaries.

2http://www.statmt.org/wmt11/featured-translation-
task.html
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3.3 Tweet Scoring

After training the N-gram language models, the

next step was scoring. For each hashtag file that

needed to be evaluated, the logarithm of the proba-

bility was assigned to each tweet in the hashtag file

based on the trained language model. The larger

the probability, the more likely that tweet was ac-

cording to the language model. Table 1 shows an

example of two scored tweets from hashtag file

Bad Job In 5 Words.tsv based on the tweet data

trigram language model. Note that KenLM reports

the log of the probability of the N-grams rather

than the actual probabilities so the value closer to

0 (-19) has the higher probability and is associated

with the tweet judged to be funnier.

3.4 Tweet Prediction

The system sorts all the tweets for each hashtag

and orders them based on their log probability

score, where the funniest tweet should be listed

first. If the scores are based on the tweet lan-

guage model then they are sorted in ascending or-

der since the log probability value closest to 0 indi-

cates the tweet that is most like the (funny) tweets

model. However, if the log probability scores are

based on the news data then they are sorted in de-

scending order since the largest value will have the

smallest probability associated with it and is there-

fore least like the (unfunny) news model.

For Subtask A, the system goes through the

sorted list of tweets in a hashtag file and com-

pares each pair of tweets. For each pair, if the

first tweet was funnier than the second, the system

would output the tweet ids for the pair followed

by a “1”. If the second tweet is funnier it outputs

the tweet ids followed by a “0”. For Subtask B,

the system outputs all the tweet ids for a hashtag

file starting from the funniest.

4 Experiments and Results

In this section we present the results from our de-

velopment stage (Table 2), the evaluation stage

(Table 3), and two post-evaluation results (Ta-

ble 3). Since we implemented both bigram and

trigam language models during the development

stage but only results from trigram language mod-

els were submitted to the task, we evaluated

bigram language models in the post-evaluation

stage. Note that the accuracy and distance mea-

surements listed in Table 2 and Table 3 are defined

by the task organizers (Potash et al., 2017).

Table 2 shows results from the development

stage. These results show that for the tweet data

the best setting is to keep the # and @, omit sen-

tence boundaries, be case sensitive, and ignore to-

kenization. While using these settings the trigram

language model performed better on Subtask B

(.887) and the bigram language model performed

better on Subtask A (.548). We decided to rely

on trigram language models for the task evalua-

tion since the advantage of bigrams on Subtask A

was very slight (.548 versus .543). For the news

data, we found that the best setting was to per-

form tokenization, omit sentence boundaries, and

to be case sensitive. Given that trigrams performed

most effectively in the development stage, we de-

cided to use those during the evaluation.

Table 3 shows the results of our system dur-

ing the task evaluation. We submitted two runs,

one with a trigram language model trained on the

tweet data, and another with a trigram language

model trained on the news data. In addition, after

the evaluation was concluded we also decided to

run the bigram language models as well. Contrary

to what we observed in the development data, the

bigram language model actually performed some-

what better than the trigram language model. In

addition, and also contrary to what we observed

with the development data, the news data proved

generally more effective in the post–evaluation

runs than the tweet data.

5 Discussion and Future Work

We relied on bigram and trigram language mod-

els because tweets are short and concise, and often

only consist of just a few words.

The performance of our system was not con-

sistent when comparing the development to the

evaluation results. During development language

models trained on the tweet data performed bet-

ter. However during the evaluation and post-

evaluation stage, language models trained on the

news data were significantly more effective. We

also observed that bigram language models per-

formed slightly better than trigram models on the

evaluation data. This suggests that going forward

we should also consider both the use of unigram

and character–level language models.

These results suggest that there are only slight

differences between bigram and trigram models,

and that the type and quantity of corpora used to

train the models is what really determines the re-
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The hashtag: #BadJobIn5Words

tweet id tweet score

705511149970726912 The host of Singled Out #Bad-

JobIn5Words @midnight

-19.923433303833008

705538894415003648 Donut receipt maker and sorter

#BadJobIn5Words @midnight

-27.67446517944336

Table 1: Scored tweets according to the trigram LM. The log probability scores computed based on the

trigram LM are shown in the third column.

DataSet N-gram # and

@ re-

moved

Sentence

Bound-

aries

Lowercase Tokenization Subtask A

Accuracy

Subtask B

Distance

tweets trigram False False False False 0.543 0.887

tweets bigram False False False False 0.548 0.900

tweets trigram False True True False 0.522 0.900

tweets bigram False True True False 0.534 0.887

news trigram NA False False True 0.539 0.923

news bigram NA False False True 0.524 0.924

news trigram NA False False False 0.460 0.923

news bigram NA False False False 0.470 0.900

Table 2: Development results based on trial dir data. The settings we chose to train LMs are in bold.

DataSet N-gram # and

@ re-

moved

Sentence

Bound-

aries

Lowercase Tokenization Subtask A

Accuracy

Subtask B

Distance

tweets trigram False False False False 0.397 0.967

tweets bigram False False False False 0.406 0.944

news trigram NA False False True 0.627 0.872

news bigram NA False False True 0.624 0.853

Table 3: Evaluation results (bold) and post-evaluation results based on evaluation dir data. The trigram

LM trained on the news data ranked 4th place on Subtask A and 1st place on Subtask B.

sults.

The task description paper (Potash et al., 2017)

reported system by system results for each hash-

tag. We were surprised to find that our perfor-

mance on the hashtag file #BreakUpIn5Words in

the evaluation stage was significantly better than

any other system on both Subtask A (with accu-

racy of 0.913) and Subtask B (with distance score

of 0.636). While we still do not fully understand

the cause of these results, there is clearly some-

thing about the language used in this hashtag that

is distinct from the other hashtags, and is some-

how better represented or captured by a language

model. Reaching a better understanding of this re-

sult is a high priority for future work.

The tweet data was significantly smaller than

the news data, and so certainly we believe that this

was a factor in the performance during the evalu-

ation stage, where the models built from the news

data were significantly more effective. Going for-

ward we plan to collect more tweet data, particu-

larly those that participate in #HashtagWars. We

also intend to do some experiments where we cut

the amount of news data and then build models to

see how those compare.

While our language models performed well,

there is some evidence that neural network models

can outperform standard back-off N-gram models

(Mikolov et al., 2011). We would like to experi-

ment with deep learning methods such as recurrent

neural networks, since these networks are capable

of forming short term memory and may be better

suited for dealing with sequence data.
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