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Abstract

This is the Lump team participation at Se-
mEval 2017 Task 1 on Semantic Textual
Similarity. Our supervised model relies on
features which are multilingual or interlin-
gual in nature. We include lexical sim-
ilarities, cross-language explicit semantic
analysis, internal representations of mul-
tilingual neural networks and interlingual
word embeddings. Our representations al-
low to use large datasets in language pairs
with many instances to better classify in-
stances in smaller language pairs avoid-
ing the necessity of translating into a sin-
gle language. Hence we can deal with all
the languages in the task: Arabic, English,
Spanish, and Turkish.

1 Introduction

The Semantic Textual Similarity (STS) task poses
the following challenge. Let s and t be two text
snippets. Determine the degree of equivalence
α(s, t) | α ∈ [0, 5]. Whereas 0 represents com-
plete independence, 5 reflects semantic equiva-
lence. The current edition (Cer et al., 2017) in-
cludes the monolingual ar–ar, en–en, and es–
es, as well as the cross-language ar–en, es–
en, and tr–enlanguage pairs. We use the two-
letter ISO 639-1 codes: ar=Arabic, en=English,
es=Spanish, and tr=Turkish.

Multilinguality is the premise of the Lump ap-
proach: we use representations which lie towards
language-independence as we aim to be able to
approach similar tasks on other languages, pay-
ing the least possible effort. Our regression model
relies on different kinds of features, from simple
length-based and lexical similarities to more so-
phisticated embeddings and deep neural net inter-
nal representations.

2 Features Description

The main algorithm used in this work is the sup-
port vector regressor from LibSVM (Chang and
Lin, 2011). We use an RBF kernel and greed-
ily select the best parameters by 5-fold cross-
validation. In addition, we experiment with a dif-
ferent machine learning component built with gra-
dient boosting algorithms as implemented by the
XGBoost package.1

We describe the features in growing level of
complexity: from language flags up to embed-
dings derived from neural machine translation.

2.1 Language-Identification Flags (6 feats.)

The novelty of the cross-language tasks causes a
noticeable language imbalance in the amount of
data (cf. Table 1). To deal with this issue, one of
our systems learns on the instances in all the lan-
guage pairs jointly. In order to reduce the clutter of
the different data distributions, we devised six bi-
nary features that mark the languages of each pair.
lang1, lang2 and lang3 are set to 1 if s is written
in either ar, en, or es, respectively. The other
three features, lang4, lang5, and lang6, provide
the same information for t. For instance, the value
for the six features for a pair en–ar would be 0
1 0 1 0 0.

2.2 Lengths (3 feats.)

Intuitively, if s and t have a similar length, being
semantically similar is more plausible. Hence, we
consider two integer features tok s and tok t: the
number of tokens in s and t. We also use a length
model (Pouliquen et al., 2003) len, defined as

%(s, t) = e

−0.5

(
|t|
|s|−µ
σ

)2

, (1)

1http://xgboost.readthedocs.io
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where µ and σ are the mean and standard devia-
tion of the character lengths ratios between trans-
lations of documents from L into L′; | · | represents
the length of · in characters. If the ratio of lengths
of s and t is far from the mean for related snippets,
%(s, t) is rather low. This has shown useful in sim-
ilar cross-language tasks (Barrón-Cedeño et al.,
2010; Potthast et al., 2011). The parameters for the
different language pairs are µen−ar = 1.23±0.60,
µen−es = 1.13± 0.41, µen−tr = 1.04± 0.56, and
µx−x = 1.00± 0.32 for monolingual pairs.

2.3 Lexical Similarities (5 feats.)

We compute cosine similarities between character
n-gram representations of s and t, with n = [2, 5]
(2grm,. . .,5grm). The pre-processing in this case
is casefolding and diacritics removal. The fifth
feature cog is the cosine similarity computed over
“pseudo-cognate” representations. From an NLP
point of view, cognates are “words that are similar
across languages” (Manning and Schütze, 1999).
We relax this concept and consider as pseudo-
cognates any words in two languages that share
prefixes. To do so, we discard tokens shorter
than four characters, unless they contain non-
alphabetical characters, and cut off the resulting
tokens to four characters (Simard et al., 1992).

This kind of representations is used on Euro-
pean languages with similar alphabets (McNamee
and Mayfield, 2004; Simard et al., 1992). We ap-
ply Buckwalter transliteration to texts in ar and
remove vowels from the snippets written in latin
alphabets. For the pseudo-cognates computations,
we use three characters instead of four.

2.4 Explicit Semantic Analysis (1 feat.)

We compute the similarity between s and
t by means of explicit semantic analysis
(ESA) (Gabrilovich and Markovitch, 2007).
ESA is a distributional-semantics model in which
texts are represented by means of their similarity
against a large reference collection. CL-ESA —its
cross-language extension (Potthast et al., 2008)—
relies on a comparable collection. We compute
a standard cosine similarity of the resulting
vectorial representations of s and t. Our reference
collection consists of 12k comparable Wikipedia
articles from the ar, en, and es 2015 editions.
We did not compile a reference collection for tr.

2.5 Context Vectors in a Neural Machine
Translation Engine (2 feats.)

Hidden units in neural networks learn to interpret
the input and generate a new representation of it.
We take advantage of this characteristic and train
a multilingual neural machine translation (NMT)
system to obtain a representation in a common
space for sentences in all the languages. We build
the NMT system in the same philosophy of John-
son et al. (2016) using and adapting the Nematus
engine (Sennrich et al., 2016). The multilingual
system is able to translate between any combina-
tion of languages ar, en, and es. It was trained
on 60 k parallel sentences (20 k per language pair)
using 512-dimensional word embeddings, 1024
hidden units, a minibatch of 200 samples, and ap-
plying Adadelta optimisation. The parallel corpus
includes data from United Nations (Rafalovitch
and Dale, 2009), Common Crawl2, News Com-
mentary3 and IWSLT.4

We are not interested in the translations but
in the context vectors output of the hidden lay-
ers of the encoder, as these are supposed to have
learnt an interlingua representation of the input.
We compute the cosine similarity between 2048-
dimensional context vectors from the internal rep-
resentation when the encoder is fed with s and t.
Two independent systems, one trained with words
and another one trained with lemmas5 provide our
two features lNMT and wNMT .

2.6 Embeddings for Babel Synsets (2 feats.)

BabelNet is a multilingual semantic network con-
necting concepts via Babel synsets (Navigli and
Ponzetto, 2012). Each concept, or word, is identi-
fied by its ID irrespective of its language, making
these IDs interlingua. For this feature, we gather
corpora in the three languages, convert them into
sequences of BabelNet IDs, and estimate 300-
dimensional word embeddings using the CBOW
algorithm, as implemented in the Word2Vec

2http://commoncrawl.org/
3http://www.casmacat.eu/corpus/

news-commentary.html
4https://sites.google.com/site/

iwsltevaluation2016/mt-track/
5We built a version of the lemma translator with an extra

language: Babel synsets (cf. Section 2.6), representing sen-
tences with BabelNet IDs instead of words. The purpose was
to extract also this feature for the tr surprise language, since
it could be used for every language once the input sentences
are converted into BabelNet IDs. However, the training was
not advanced enough before the deadline and we could not
include the results.

145



2017 Track L–L′ Instances Pctge.
1 ar–ar 1, 081 5.11
2 ar–en 2, 162 10.21
3 es–es 1, 555 7.34
4 es–en 1, 595 7.53
5 en–en 14, 778 69.80
6 tr–en 0∗ 0.00

total 21, 171 100

Table 1: Instances provided in the history of STS. (∗No
training data exists for this pair.)

package (Mikolov et al., 2013), with a 5-token
window. We use the same corpora described be-
fore for training the NMT system with the addition
of parts of Wikipedia and Gigaword to estimate the
embeddings. For these experiments we annotated
1.7G tokens for ar, 1.1G for en, and 0.9G for
es. As we are not interested in all the words of a
sentence to represent its semantics, we restrict the
extraction of Babel synsets to adjectives, adverbs,
nouns, and verbs. Negations are considered tag-
ging them with a special label. The global embed-
dings are then estimated from 1.9G synsets (0.9G
ar, 0.5G en, and 0.4G es).

Our two features consist of the cosine similar-
ity between the embeddings of the two snippets.
The full embedding of a snippet is obtained as
the sum of the embeddings if its tokens. The dif-
ference between the two features lies in the cor-
pus from which we estimate the embeddings. For
BNall we used the full collection of corpora in
the three languages. For BNsub we only used the
subcollection of data coming from the languages
involved in the pair. Significant differences in the
performance of these two features will allow us to
discern weather the interlinguality of these embed-
dings is a fair assumption or not (even if synsets
are interlingua, its embeddings do not need to be).

2.7 Additional Features

We produced variations of the described fea-
tures. We used other similarity measures than co-
sine: modified versions of the weighted Jaccard
similarity, and the Kullback–Leibler and Jensen–
Shannon divergences). We replicated the features
described in Sections 2.3 to 2.6 with their mono-
lingual counterpart. We obtained the counterpart
translating ar and es snippets into en for Tracks
1-4 and 6, and en snippets into es for Track
5 with the multilingual NMT system (cf. Sec-
tion 2.5). We used Google Translate for tr.

3 Experiments

For training, we used all the annotated datasets
released both in the current and in previous edi-
tions.6 Table 1 shows the size of the different lan-
guage collections. Note the important imbalance:
there are more than ten times more instances avail-
able in en only than in the rest of languages. We
used the test set from the 2016 edition (only in En-
glish) (Agirre et al., 2016) as our internal test set.

Using the features in Sections 2.1 to 2.6, we
train two regressors by:
Sys1 learning one SVM per each language pair
Sys2 learning one single SVM for all the lan-

guage pairs together.
We experiment with a third system using all the

extensions of Section 2.7 on XGBoost. The pur-
pose of this system is to analyse and compare dif-
ferent assumptions made for Sys1 and Sys2:
Sys3 learning one single XGB for all the lan-

guage pairs with an extended set of features.

Table 2 shows the results of the three set-
tings; including the average Pearson correlation
for mono- and cross-language tracks. Compar-
ing Sys1 and Sys2, we see that in the case of en–
en the best performance is obtained when training
on en only. Adding instances in other languages
slightly confuses our regressor, but differences are
small; the number of examples added is only a
30%. Nevertheless, considering together differ-
ent language pairs does help when dealing with
less-represented pairs. This is the case of ar–ar,
es–es, and es–en where the inclusion of more
than ten times more instances in other languages
boosts the performance. We did not observe this
behaviour in the rest of language pairs. The worst
case is that of the surprise pair tr–en. The reason
could be that we could not compute all the features
for these instances and instead, we used equiva-
lents for en. Regarding the performance of our
models on mono- and cross-language pairs, con-
sidering one single classifier versus one per lan-
guage pair makes no difference when dealing with
monolingual instances. This reflects the nature of
the data: 82% of the training set is monolingual.
The story is different when dealing with cross-
language instances. Further experiments are nec-
essary using one classifier with cross-language in-
stances only.

6In order to combine all the datasets we had to do some
cleaning and adaptation. For instance, the similarity values in
some of the subsets ranged [0, 4] rather than [0, 5].
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Track L–L′ Sys1 Sys2 Sys3
Primary all 0.4725 0.4438 0.4704

1 ar–ar 0.6052 0.6287 0.5508
2 ar–en 0.1829 0.1805 0.1357
3 es–es 0.7574 0.7380 0.7676
4a es–en 0.4327 0.4447 0.4825
4b es–en 0.0116 0.0151 0.1112
5 en–en 0.7376 0.7347 0.7269
6 tr–en 0.5800 0.3652 0.5179

avgmono 0.7001 0.7005 0.6818
avgcross 0.3359 0.2899 0.3435

Table 2: Official Pearson correlation performance for our
three submissions. Average correlations for mono- and
cross-language tracks at the bottom.

Regarding Sys3, we observe a lost in perfor-
mance with respect to Sys1 and Sys2, except for
the tracks involving es. The system introduces
three variations with respect to Sys2: the learning
model, the addition of several similarity measures
for each representation, and the addition of new
representations obtained after translating the input
into en (es). A deeper analysis shows that the
performance drop is due to the learning algorithm.
XGBoost is performing better than SVM in our
cross-validation. However, the loss function we
use is a mean squared error and the evaluation is
done via Pearson correlation. We attribute the dis-
crepancy to this fact. Still, except for en–en, the
inclusion of the two families of features improves
the results of the basic features set.

Gradient boosting methods allow to estimate the
importance of each feature in a very natural way:
the more a feature is used to take the decisions in
the construction of the boosted trees, the more im-
portant it is (Hastie, 2013). The complete anal-
ysis is out of the scope of this paper, but some
comments and remarks can be made in the light
of their relative importance. Figure 1 shows the
relative importance of the features given by three
XGBoost regressors: one trained only with en
monolingual data, one for en–es cross-language
data, and one for all the languages trained together.
The concrete distribution of features depends on
the specific language pair, but the set {len, 2grm,
(CL)ESA, lNMT , wNMT , BNsub, BNall}
stands out among the full set. Notice that language
identifiers are not relevant at all for the joint model
and the regressor practically neglects them.

In general, the internal representation of the
neural network is more important for cross-
language pairs and Babel embeddings are more
relevant for monolingual pairs. In the latter, we
observe almost no difference between the relative

importance ofBNsub andBNall, confirming the
assumption of the interlinguality of the embed-
dings. (CL-)ESA is always among the most in-
formative features. Finally, the high contribution
of two simple scores is worth noting: len and
2grm. This comes at no surprise for len (Barrón-
Cedeño et al., 2014). Regarding the n-grams sim-
ilarity, in general {3, 4}-grams perform better in
similar tasks (e.g., comparable corpora parallelisa-
tion (Barrón-Cedeño et al., 2015)), but no impor-
tant difference exist with respect to using 2-grams.

4 Conclusions and Future Work

Our approach to the SemEval 2017 task on se-
mantic textual similarity focused on designing text
representations which could be equivalent across
languages. For example, instead of using stan-
dard monolingual or bilingual word embeddings,
we build embeddings for the interlingua Babel
synsets or let an autoencoder learn representations
in the multilingual space. In internal experiments,
monolingual word embeddings performed better
than BabelNet embeddings for the monolingual
tracks, but the advantage of the latter is that the
same embeddings can be used for the seven tracks.
This is useful for less-resourced languages and for
easy porting of the system to new languages. That
was true for the tr–en track but, at the moment,
the huge difference between the performance of
our systems across tracks does not allow us to go
further with this conclusion.

In the future we want to take advantage of the
amount of information that BabelNet has and we
aim at including synsets for multiword expressions
and exploiting translations to be able to extract the
same sense in all the languages. We are also study-
ing the behaviour of the internal representation of
NMT systems in order to determine the appropri-
ate configuration of the translation system to be
used for this purpose. To the best of our knowl-
edge, the internal representation and the impor-
tance of its dimensionality has not been studied as
an interlingual space.
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Figure 1: Relative importance of the features in the XGBoost regressors for the monolingual en–en Track 5, the cross-
language en–es Track 4, and the all joint training.
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