
Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017), pages 97–103,
Vancouver, Canada, August 3-4, 2017. c©2017 Association for Computational Linguistics

Frame-Based Continuous Lexical Semantics through Exponential Family
Tensor Factorization and Semantic Proto-Roles

Francis Ferraro and Adam Poliak and Ryan Cotterell and Benjamin Van Durme
Center for Language and Speech Processing

Johns Hopkins University
{ferraro,azpoliak,ryan.cotterell,vandurme}@cs.jhu.edu

Abstract

We study how different frame annota-
tions complement one another when learn-
ing continuous lexical semantics. We
learn the representations from a tensorized
skip-gram model that consistently en-
codes syntactic-semantic content better,
with multiple 10% gains over baselines.

1 Introduction

Consider “Bill” in Fig. 1: what is his involve-
ment with the words “would try,” and what does
this involvement mean? Word embeddings repre-
sent such meaning as points in a real-valued vec-
tor space (Deerwester et al., 1990; Mikolov et al.,
2013). These representations are often learned by
exploiting the frequency that the word cooccurs
with contexts, often within a user-defined window
(Harris, 1954; Turney and Pantel, 2010). When
built from large-scale sources, like Wikipedia or
web crawls, embeddings capture general charac-
teristics of words and allow for robust downstream
applications (Kim, 2014; Das et al., 2015).

Frame semantics generalize word meanings to
that of analyzing structured and interconnected la-
beled “concepts” and abstractions (Minsky, 1974;
Fillmore, 1976, 1982). These concepts, or roles,
implicitly encode expected properties of that word.
In a frame semantic analysis of Fig. 1, the segment
“would try” triggers the ATTEMPT frame, filling
the expected roles AGENT and GOAL with “Bill”
and “the same tactic,” respectively. While frame
semantics provide a structured form for analyzing
words with crisp, categorically-labeled concepts,
the encoded properties and expectations are im-
plicit. What does it mean to fill a frame’s role?

Semantic proto-role (SPR) theory, motivated by
Dowty (1991)’s thematic proto-role theory, offers
an answer to this. SPR replaces categorical roles

ATTEMPT

She said Bill would try the same tactic again.

AGENT GOAL

Figure 1: A simple frame analysis.

with judgements about multiple underlying prop-
erties about what is likely true of the entity fill-
ing the role. For example, SPR talks about how
likely it is for Bill to be a willing participant in the
ATTEMPT. The answer to this and other simple
judgments characterize Bill and his involvement.
Since SPR both captures the likelihood of certain
properties and characterizes roles as groupings of
properties, we can view SPR as representing a type
of continuous frame semantics.

We are interested in capturing these SPR-based
properties and expectations within word embed-
dings. We present a method that learns frame-
enriched embeddings from millions of documents
that have been semantically parsed with multiple
different frame analyzers (Ferraro et al., 2014).
Our method leverages Cotterell et al. (2017)’s
formulation of Mikolov et al. (2013)’s popular
skip-gram model as exponential family principal
component analysis (EPCA) and tensor factor-
ization. This paper’s primary contributions are:
(i) enriching learned word embeddings with mul-
tiple, automatically obtained frames from large,
disparate corpora; and (ii) demonstrating these
enriched embeddings better capture SPR-based
properties. In so doing, we also generalize Cot-
terell et al.’s method to arbitrary tensor dimen-
sions. This allows us to include an arbitrary
amount of semantic information when learning
embeddings. Our variable-size tensor factoriza-
tion code is available at https://github.com/

fmof/tensor-factorization.
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2 Frame Semantics and Proto-Roles

Frame semantics currently used in NLP have a rich
history in linguistic literature. Fillmore (1976)’s
frames are based on a word’s context and prototyp-
ical concepts that an individual word evokes; they
intend to represent the meaning of lexical items by
mapping words to real world concepts and shared
experiences. Frame-based semantics have inspired
many semantic annotation schemata and datasets,
such as FrameNet (Baker et al., 1998), PropBank
(Palmer et al., 2005), and Verbnet (Schuler, 2005),
as well as composite resources (Hovy et al., 2006;
Palmer, 2009; Banarescu et al., 2012).1

Thematic Roles and Proto Roles These re-
sources map words to their meanings through
discrete/categorically labeled frames and roles;
sometimes, as in FrameNet, the roles can be very
descriptive (e.g., the DEGREE role for the AF-
FIRM OR DENY frame), while in other cases, as
in PropBank, the roles can be quite general (e.g.,
ARG0). Regardless of the actual schema, the roles
are based on thematic roles, which map a predi-
cate’s arguments to a semantic representation that
makes various semantic distinctions among the ar-
guments (Dowty, 1989).2 Dowty (1991) claims
that thematic role distinctions are not atomic, i.e.,
they can be deconstructed and analyzed at a lower
level. Instead of many discrete thematic roles,
Dowty (1991) argues for proto-thematic roles, e.g.
PROTO-AGENT rather than AGENT, where dis-
tinctions in proto-roles are based on clusterings of
logical entailments. That is, PROTO-AGENTs of-
ten have certain properties in common, e.g., ma-
nipulating other objects or willingly participating
in an action; PROTO-PATIENTs are often changed
or affected by some action. By decomposing the
meaning of roles into properties or expectations
that can be reasoned about, proto-roles can be seen
as including a form of vector representation within
structured frame semantics.

3 Continuous Lexical Semantics

Word embeddings represent word meanings as el-
ements of a (real-valued) vector space (Deerwester
et al., 1990). Mikolov et al. (2013)’s word2vec
methods—skip-gram (SG) and continuous bag of

1See Petruck and de Melo (2014) for detailed descriptions
on frame semantics’ contributions to applied NLP tasks.

2Thematic role theory is rich, and beyond this paper’s
scope (Whitehead, 1920; Davidson, 1967; Cresswell, 1973;
Kamp, 1979; Carlson, 1984).

words (CBOW)—repopularized these methods.
We focus on SG, which predicts the context i
around a word j, with learned representations ci

and wj , respectively, as p(context i | word j) ∝
exp (cᵀ

i wj) = exp (1ᵀ(ci �wj)) , where� is the
Hadamard (pointwise) product. Traditionally, the
context words i are those words within a small
window of j and are trained with negative sam-
pling (Goldberg and Levy, 2014).

3.1 Skip-Gram as Matrix Factorization
Levy and Goldberg (2014b), and subsequently
Keerthi et al. (2015), showed how vectors learned
under SG with the negative sampling are, under
certain conditions, the factorization of (shifted)
positive pointwise mutual information. Cotterell
et al. (2017) showed that SG is a form of ex-
ponential family PCA that factorizes the matrix
of word/context cooccurrence counts (rather than
shifted positive PMI values). With this interpre-
tation, they generalize SG from matrix to tensor
factorization, and provide a theoretical basis for
modeling higher-order SG (or additional context,
such as morphological features of words) within a
word embeddings framework.

Specifically, Cotterell et al. recast higher-order
SG as maximizing the log-likelihood∑

ijk

Xijk log p(context i | word j, feature k) (1)

=
∑
ijk

Xijk log
exp (1ᵀ(ci �wj � ak))∑
i′ exp (1ᵀ(ci′ �wj � ak))

, (2)

where Xijk is a cooccurrence count 3-tensor of
words j, surrounding contexts i, and features k.

3.2 Skip-Gram as n-Tensor Factorization
When factorizing an n-dimensional tensor to in-
clude an arbitrary number of L annotations, we
replace feature k in Equation (1) and ak in Equa-
tion (2) with each annotation type l and vector αl

included. Xi,j,k becomes Xi,j,l1,...lL , representing
the number of times word j appeared in context i
with features l1 through lL. We maximize∑

i,j,l1,...,lL

Xi,j,l1,...,lL log βi,j,l1,...,lL

βi,j,l1,...,lL ∝ exp (1ᵀ(ci �wj �αl1 � · · · �αlL)) .

4 Experiments

Our end goal is to use multiple kinds of au-
tomatically obtained, “in-the-wild” frame se-
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mantic parses in order to improve the seman-
tic content—specifically SPR-type information—
within learned lexical embeddings. We utilize ma-
jority portions of the Concretely Annotated New
York Times and Wikipedia corpora from Ferraro
et al. (2014). These have been annotated with
three frame semantic parses: FrameNet from Das
et al. (2010), and both FrameNet and PropBank
from Wolfe et al. (2016). In total, we use nearly
five million frame-annotated documents.
Extracting Counts The baseline extraction we
consider is a standard sliding window: for each
word wj seen ≥ T times, extract all words wi two
to the left and right ofwj . These counts, forming a
matrix, are then used within standard word2vec.
We also follow Cotterell et al. (2017) and augment
the above with the signed number of tokens sepa-
rating wi and wj , e.g., recording that wi appeared
two to the left of wj ; these counts form a 3-tensor.

To turn semantic parses into tensor counts, we
first identify relevant information from the parses.
We consider all parses that are triggered by the tar-
get word wj (seen ≥ T times) and that have at
least one role filled by some word in the sentence.
We organize the extraction around roles and what
fills them. We extract every word wr that fills all
possible triggered frames; each of those frame and
role labels; and the distance between filler wr and
trigger wj . This process yields a 9-tensor X.3 Al-
though we always treat the trigger as the “origi-
nal” word (e.g., word j, with vector wj), later we
consider (1) what to include from X, (2) what to
predict (what to treat as the “context” word i), and
(3) what to treat as auxiliary features.
Data Discussion The baseline extraction methods
result in roughly symmetric target and surround-
ing word counts. This is not the case for the frame
extraction. Our target words must trigger some
semantic parse, so our target words are actually
target triggers. However, the surrounding context
words are those words that fill semantic roles. As
shown in Table 1, there are an order-of-magnitude
fewer triggers than target words, but up to an
order-of-magnitude more surrounding words.
Implementation We generalize Levy and Gold-
berg (2014a)’s and Cotterell et al. (2017)’s code

3 Each record consists of the trigger, a role filler, the num-
ber of words between the trigger and filler, and the relevant
frame and roles from the three semantic parsers. Being au-
tomatically obtained, the parses are overlapping and incom-
plete; to properly form X, one can implicitly include special
〈NO FRAME〉 and 〈NO ROLE〉 labels as needed.

windowed frame

# target words
232 35.9 (triggers)
404 45.7 (triggers)

# surrounding 232 531 (role fillers)
words 404 2,305 (role fillers)

Table 1: Vocabulary sizes, in thousands, extracted from Fer-
raro et al. (2014)’s data with both the standard sliding context
window approach (§3) and the frame-based approach (§4).
Upper numbers (Roman) are for newswire; lower numbers
(italics) are Wikipedia. For both corpora, 800 total FrameNet
frame types and 5100 PropBank frame types are extracted.

to enable any arbitrary dimensional tensor fac-
torization, as described in §3.2. We learn 100-
dimensional embeddings for words that appear at
least 100 times from 15 negative samples.4 The
implementation is available at https://github.
com/fmof/tensor-factorization.
Metric We evaluate our learned (trigger) embed-
dings w via QVEC (Tsvetkov et al., 2015). QVEC

uses canonical correlation analysis to measure the
Pearson correlation between w and a collection
of oracle lexical vectors o. These oracle vectors
are derived from a human-annotated resource. For
QVEC, higher is better: a higher score indicates w
more closely correlates (positively) with o.
Evaluating Semantic Content with SPR Mo-
tivated by Dowty (1991)’s proto-role theory,
Reisinger et al. (2015), with a subsequent expan-
sion by White et al. (2016), annotated thousands
of predicate-argument pairs (v, a) with (boolean)
applicability and (ordinal) likelihoods of well-
motivated semantic properties applying to/being
true of a.5 These likelihood judgments, under
the SPR framework, are converted from a five-
point Likert scale to a 1–5 interval scale. Be-
cause the predicate-argument pairs were extracted
from previously annotated dependency trees, we
link each property with the dependency relation
joining v and a when forming the oracle vectors;
each component of an oracle vector ov is the unity-
normalized sum of likelihood judgments for joint
property and grammatical relation, using the inter-
val responses when the property is applicable and
discarding non-applicable properties, i.e. treating
the response as 0. Thus, the combined 20 prop-
erties of Reisinger et al. (2015) and White et al.
(2016)—together with the four basic grammatical

4In preliminary experiments, this occurrence threshold
did not change the overall conclusions.

5 We use the training portion of http:
//decomp.net/wp-content/uploads/2015/08/
UniversalDecompositionalSemantics.tar.gz.
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(a) Changes in SPR-QVEC for Annotated NYT. (b) Changes in SPR-QVEC for Wikipedia.

Figure 2: Effect of frame-extracted tensor counts on our SPR-QVEC evaulation. Deltas are shown as relative percent changes
vs. the word2vec baseline. The dashed line represents the 3-tensor word2vec method of Cotterell et al. (2017). Each
row represents an ablation model: sep means the prediction relies on the token separation distance between the frame and
role filler, fn-frame means the prediction uses FrameNet frames, fn-role means the prediction uses FrameNet roles, and
filler means the prediction uses the tokens filling the frame role. Read from top to bottom, additional contextual features
are denoted with a +. Note when filler is used, we only predict PropBank roles.

relations nsubj, dobj, iobj and nsubjpass—result
in 80-dimensional oracle vectors.6

Predict Fillers or Roles? Since SPR judgments
are between predicates and arguments, we predict
the words filling the roles, and treat all other frame
information as auxiliary features. SPR annotations
were originally based off of (gold-standard) Prop-
Bank annotations, so we also train a model to pre-
dict PropBank frames and roles, thereby treating
role-filling text and all other frame information as
auxiliary features. In early experiments, we found
it beneficial to treat the FrameNet annotations ad-
ditively and not distinguish one system’s output
from another. Treating the annotations additively
serves as a type of collapsing operation. Although
X started as a 9-tensor, we only consider up to
6-tensors: trigger, role filler, token separation be-
tween the trigger and filler, PropBank frame and
role, FrameNet frame, and FrameNet role.
Results Fig. 2 shows the overall percent change
for SPR-QVEC from the filler and role predic-
tion models, on newswire (Fig. 2a) and Wikipedia
(Fig. 2b), across different ablation models. We
indicate additional contextual features being used
with a +: sep uses the token separation distance
between the frame and role filler, fn-frame
uses FrameNet frames, fn-role uses FrameNet
roles, filler uses the tokens filling the frame

6 The full cooccurrence among the properties and rela-
tions is relatively sparse. Nearly two thirds of all non-zero
oracle components are comprised of just fourteen properties,
and only the nsubj and dobj relations.

role, and none indicates no additional informa-
tion is used when predicting. The 0 line represents
a plain word2vec baseline and the dashed line
represents the 3-tensor baseline of Cotterell et al.
(2017). Both of these baselines are windowed:
they are restricted to a local context and cannot
take advantage of frames or any lexical signal that
can be derived from frames.

Overall, we notice that we obtain large improve-
ments from models trained on lexical signals that
have been derived from frame output (sep and
none), even if the model itself does not incorpo-
rate any frame labels. The embeddings that predict
the role filling lexical items (the green triangles)
correlate higher with SPR oracles than the em-
beddings that predict PropBank frames and roles
(red circles). Examining Fig. 2a, we see that both
model types outperform both the word2vec and
Cotterell et al. (2017) baselines in nearly all model
configurations and ablations. We see the highest
improvement when predicting role fillers given the
frame trigger and the number of tokens separating
the two (the green triangles in the sep rows).

Comparing Fig. 2a to Fig. 2b, we see newswire
is more amenable to predicting PropBank frames
and roles. We posit this is a type of out-of-
domain error, as the PropBank parser was trained
on newswire. We also find that newswire is over-
all more amenable to incorporating limited frame-
based features, particularly when predicting Prop-
Bank using lexical role fillers as part of the con-
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1 foresaw
2 figuring

3 alleviated
4 craved

5 jeopardized

6 pondered
7 kidded

8 constituted
9 uttering

10 forgiven

1 pioneered
2 scratch

3 complemented
4 competed
5 consoled

6 tolerated
7 resurrected

8 sweated
9 fancies

10 concocted

1 containing
2 contains

3 manufactures
4 contain

5 consume

6 storing
7 reproduce

8 store
9 exhibiting
10 furnish

1 anticipate
2 anticipating
3 anticipates
4 stabbing
5 separate

6 intimidated
7 separating
8 separates

9 drag
10 guarantee

1 invent
2 document

3 documented
4 invents

5 documents

6 aspire
7 documenting

8 aspires
9 inventing
10 swinging

1 produces
2 produce
3 produced

4 prized
5 originates

6 ridden
7 improves
8 surround
9 surrounds

10 originating

producing

Filler | sep

producing

PropBank | sep

invented

Filler | sep

invented

PropBank | sep

anticipated

Filler | sep

anticipated

PropBank | sep

Figure 3: K-Nearest Neighbors for three randomly sampled
trigger words, from two newswire models.

textual features. We hypothesize this is due to
the significantly increased vocabulary size of the
Wikipedia role fillers (c.f., Tab. 1). Note, how-
ever, that by using all available schema informa-
tion when predicting PropBank, we are able to
compensate for the increased vocabulary.

In Fig. 3 we display the ten nearest neighbors
for three randomly sampled trigger words accord-
ing to two of the highest performing newswire
models. They each condition on the trigger and the
role filler/trigger separation; these correspond to
the sep rows of Fig. 2a. The left column of Fig. 3
predicts the role filler, while the right column pre-
dicts PropBank annotations. We see that while
both models learn inflectional relations, this qual-
ity is prominent in the model that predicts Prop-
Bank information while the model predicting role
fillers learns more non-inflectional paraphrases.

5 Related Work

The recent popularity of word embeddings have
inspired others to consider leveraging linguistic
annotations and resources to learn embeddings.
Both Cotterell et al. (2017) and Levy and Gold-
berg (2014a) incorporate additional syntactic and
morphological information in their word embed-
dings. Rothe and Schütze (2015)’s use lexical re-
source entries, such as WordNet synsets, to im-
prove pre-computed word embeddings. Through
generalized CCA, Rastogi et al. (2015) incorpo-
rate paraphrased FrameNet training data. On the
applied side, Wang and Yang (2015) used frame
embeddings—produced by training word2vec
on tweet-derived semantic frame (names)—as ad-
ditional features in downstream prediction.

Teichert et al. (2017) similarly explored the re-
lationship between semantic frames and thematic
proto-roles. They proposed using a Conditional
Random Field (Lafferty et al., 2001) to jointly
and conditionally model SPR and SRL. Teichert
et al. (2017) demonstrated slight improvements
in jointly and conditionally predicting PropBank
(Bonial et al., 2013)’s semantic role labels and
Reisinger et al. (2015)’s proto-role labels.

6 Conclusion

We presented a way to learn embeddings enriched
with multiple, automatically obtained frames from
large, disparate corpora. We also presented a
QVEC evaluation for semantic proto-roles. As
demonstrated by our experiments, our extension
of Cotterell et al. (2017)’s tensor factorization en-
riches word embeddings by including syntactic-
semantic information not often captured, result-
ing in consistently higher SPR-based correla-
tions. The implementation is available at https:
//github.com/fmof/tensor-factorization.
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