
Proceedings of SemEval-2016, pages 1124–1128,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

SwissCheese at SemEval-2016 Task 4: Sentiment Classification Using an
Ensemble of Convolutional Neural Networks with Distant Supervision

Jan Deriu∗
ETH Zurich
Switzerland

jderiu@student.ethz.ch

Maurice Gonzenbach∗
ETH Zurich
Switzerland

mauriceg@student.ethz.ch

Fatih Uzdilli
Zurich University of Applied Sciences

Switzerland
uzdi@zhaw.ch

Aurelien Lucchi
ETH Zurich
Switzerland

alucchi@inf.ethz.ch

Valeria De Luca
ETH Zurich
Switzerland

vdeluca@vision.ee.ethz.ch

Martin Jaggi
ETH Zurich
Switzerland

jaggi@inf.ethz.ch

Abstract

In this paper, we propose a classifier for
predicting message-level sentiments of En-
glish micro-blog messages from Twitter. Our
method builds upon the convolutional sen-
tence embedding approach proposed by (Sev-
eryn and Moschitti, 2015a; Severyn and Mos-
chitti, 2015b). We leverage large amounts of
data with distant supervision to train an en-
semble of 2-layer convolutional neural net-
works whose predictions are combined using
a random forest classifier. Our approach was
evaluated on the datasets of the SemEval-2016
competition (Task 4) outperforming all other
approaches for the Message Polarity Classifi-
cation task.

1 Introduction

Sentiment analysis is a fundamental problem aiming
to give a machine the ability to understand the emo-
tions and opinions expressed in a written text. This
is an extremely challenging task due to the complex-
ity of human language, which makes use of rhetor-
ical devices such as sarcasm or irony. Deep neu-
ral networks have shown great promises at captur-
ing salient features for these complex tasks (Mikolov
et al., 2013b; Severyn and Moschitti, 2015a). Par-
ticularly successful for sentiment classification were
Convolutional Neural Networks (CNN) (Kim, 2014;
Kalchbrenner et al., 2014; Severyn and Moschitti,
2015a; Severyn and Moschitti, 2015b; Johnson and
Zhang, 2015), on which our work builds upon.

∗ These authors contributed equally to this work

These networks typically have a large number of pa-
rameters and are especially effective when trained
on large amounts of data. In this work, we use a dis-
tant supervision approach to leverage large amounts
of data in order to train a 2-layer CNN 1, extend-
ing the 1-layer architecture proposed by (Severyn
and Moschitti, 2015a). More specifically, we train
a neural network using the following three-phase
procedure: i) creation of word embeddings for ini-
tialization of the first layer; ii) distant supervised
phase, where the network weights and word embed-
dings are trained to capture aspects related to senti-
ment; and iii) supervised phase, where the network
is trained on the provided supervised training data.
We also combine the predictions of several neural
networks using a random forest meta-classifier. The
proposed approach was evaluated on the datasets of
the SemEval-2016 competition, Task 4 (Nakov et
al., 2016)2 for which it reaches state-of-the-art re-
sults.

2 System Description

2.1 Convolutional Neural Networks

We combine the outputs of two 2-layer CNNs hav-
ing similar architectures but differing in the choice
of certain parameters (such as the number of convo-
lutional filters). These two networks were also ini-
tialized using different word embeddings and used
slightly different training data for the distant super-
vised phase. The common architecture of the two

1We here refer to a layer as one convolutional and one pool-
ing layer.

2http://alt.qcri.org/semeval2016/

1124



Sentence Matrix Convolutional 
Feature Map

pooled 
repr.

Convolutional 
Feature Map

pooled 
repr.

Hidden
Layer

Softmax

Figure 1: The architecture of the CNNs used in our approach.

CNNs is shown in Figure 1 and described in details
below.

Sentence model. Each word is associated to a vec-
tor representation, which consists in a d-dimensional
vector. A sentence (or tweet) is represented by the
concatenation of the representations of its n con-
stituent words. This yields a matrix X ∈ Rd×n,
which is used as input to the convolutional neural
network.

Convolutional layer. In this layer, a set of m fil-
ters is applied to a sliding window of length h over
each sentence. Let X[i:i+h] denote the concatenation
of word vectors xi to xi+h. A feature ci is generated
for a given filter F by:

ci :=
∑

k,j

(X[i:i+h])k,j · Fk,j (1)

A concatenation of all vectors in a sentence produces
a feature vector c ∈ Rn−h+1. The vectors c are
then aggregated over all m filters into a feature map
matrix C ∈ Rm×(n−h+1). The filters are learned
during the training phase of the neural network using
a procedure detailed in the next section.

Max pooling. The output of the convolutional
layer is passed through a non-linear activation func-
tion, before entering a pooling layer. The latter ag-
gregates vector elements by taking the maximum
over a fixed set of non-overlapping intervals. The
resulting pooled feature map matrix has the form:
Cpooled ∈ Rm×n−h+1

s , where s is the length of each
interval. In the case of overlapping intervals with a
stride value st, the pooled feature map matrix has

the form Cpooled ∈ Rm×n−h+1−s
st . Depending on

whether the borders are included or not, the result of
the fraction is rounded up or down respectively.

Hidden layer. A fully connected hidden layer
computes the transformation α(W ∗ x + b), where
W ∈ Rm×m is the weight matrix, b ∈ IRm the
bias, and α the rectified linear (relu) activation func-
tion (Nair and Hinton, 2010). The output vector of
this layer, x ∈ Rm, corresponds to the sentence em-
beddings for each tweet.

Softmax. Finally, the outputs of the final pooling
layer x ∈ Rm are fully connected to a soft-max re-
gression layer, which returns the class ŷ ∈ [1,K]
with largest probability. i.e.,

ŷ := argmax
j

P (y = j|x,w,a)

= argmax
j

ex
ᵀwj+aj

∑K
k=1 e

xᵀwk+aj
,

(2)

where wj denotes the weights vector of class j and
aj the bias of class j.

Network parameters. Training the neural net-
work consists in learning the set of parameters Θ =
{X,F1,b1,F2,b2,W,a}, where X is the sentence
matrix, with each row containing the d-dimensional
embedding vector for a specific word; Fi,bi(i =
{1, 2}) the filter weights and biases of the first and
second convolutional layers; W the concatenation
of the weights wj for every output class in the soft-
max layer; and a the bias of the soft-max layer.

2.2 Ensemble of classifiers
We combine the results of the two 2-layer CNN de-
scribed in Section 2.1 with the intent of increasing
the generalizability of the final classifier. This is

1125



achieved relying on two systems trained using dif-
ferent procedures as well as different word embed-
dings. The network parameters of the two CNNs are
summarized in Table 1. The preprocessing and train-
ing phases of the two systems are described below.

2.2.1 System I
Preprocessing and word embeddings.
The word embeddings are initialized using
word2vec (Mikolov et al., 2013a) and then trained
using an unlabelled corpus of 200M tweets. We
apply a skipgram model of window size 5 and filter
words that occur less than 5 times (Severyn and
Moschitti, 2015b). The dimensionality of the vector
representation is set to d = 52.

Training. During a first distant-supervised phase,
we use emoticons to infer the polarity of a balanced
set of 90M tweets (Read, 2005; Go et al., 2009).
The resulting dataset contains 45M tweets for both
the positive and negative class. The neural network
is trained on these 90M tweets for one epoch, be-
fore training for 10 to 15 epochs on the labelled data
provided by SemEval-2016. The word-embeddings
X ∈ Rd×n, are updated during both the distant and
the supervised training phases, as back-propagation
is applied through the entire network.

2.2.2 System II
Preprocessing and word embeddings. A corpus
of 90M tweets3 (30M contain positive emoticons,
30M negative ones and 30M contain none) is em-
ployed to create embedding vectors of d = 50 di-
mensions using GloVe (Pennington et al., 2014).
Words which appear less than 5 times are discarded.
Additionally, special flags ∈ {0, 1} are assigned to
some words, by appending a flag vector to their word
embeddings. Four different flags can be set, mark-
ing (i) words that belong to hashtags, (ii) words
that have been elongated (e.g. ’hellooo’, which is
mapped to the same vector as ’hello’), (iii) words in
which all characters are capitalized, and (iv) punctu-
ations that are repeated more than three times (e.g.
’!!!!’ and ’!!!’ being mapped to the same vector).

Training. In the distant supervised phase, the net-
work is trained for one epoch on a set of 60M tweets,

3This set differs to the 90M set used in System I, but is drawn
from the same larger corpus of tweets

containing an equal amount of samples with positive
and negative emoticons. Similarly to System I, this
pre-trained network is further refined by supervised
training for about 15 epochs on the SemEval-2016
data. We apply L2 regularization to reduce overfit-
ting to the cost function (negative log likelihood) by
adding a penalty of the form of λ‖θ‖22, with regular-
ization strength4 λ, where θ ∈ Θ are the network
parameters of each layer.

2.2.3 Optimization

The network parameters are learned using
AdaDelta (Zeiler, 2012), which adapts the learning
rate for each dimension using only first order infor-
mation. We used the hyper-parameters ε = 1e−6
and ρ = 0.95 as suggested by (Zeiler, 2012).

2.2.4 Meta-Classifier

Each aforementioned system outputs three real val-
ues ŷ corresponding to the three sentiment classes.
In addition, it outputs the categorical value for the
predicted sentiment class. The meta-classifier uses
these values (sentiment class and categorical value
of systems I and II) as input features. We trained
a random forest using the Weka (Hall et al., 2009)
library on the training data. We selected the num-
ber of trees (300), maximum depth of the forest (2)
and the number of features used per random selec-
tion (18) as to obtain the best overall performance
over the previous years’ test sets.

2.3 Computing Resources

The core routines are written in Python, mak-
ing heavy use of mathematical routines in Theano
(Bergstra et al., 2010) that exploits GPU accelera-
tion. For further performance improvement, we used
the CuDNN library (Chetlur and Woolley, 2014). The
framework requires approximately 10 hours for the
distant supervised phase and only 20-30 minutes for
the supervised phase.

Experiments were conducted on g2.2xlarge in-
stances of Amazon Web Services (AWS), which of-
fer a GRID K520 GPU with 3072 CUDA cores and
8 GB of GDDR5 RAM.

4X : λ=1−6, F1 : λ=1−5, F2 : λ=1−5, W : λ=1−7.

1126



SYSTEM I SYSTEM II
Number of convolutional filters m = 200 m = 300
Filter window size h h1 = 6, h2 = 3 h1 = 6, h2 = 4
Size of first max-pooling interval width = 6, striding = 2 width = 3, striding = 3
Activation function α relu relu

Table 1: Summary of the parameters used in System I and II

3 Data

The training and development datasets used in our
experiments were provided by the SemEval-2016
competition. A fraction of the tweets (10-15%) from
the period 2013-2015 were no longer available on
Twitter, which made the results of this year compe-
tition not directly comparable to the ones of previ-
ous years. For testing, in addition to last year’s data
(tweets, SMS, LiveJournal), new tweets were acces-
sible. An overview of the data available for down-
load is given in Table 2.

Table 2: Overview of datasets and number of tweets (or sen-

tences) provided in SemEval-2016. The data was divided into

training, development and testing sets.

Dataset Total Posit. Negat. Neutr.
Train 2013 (Tweets) 8224 3058 1210 3956
Dev 2013 (Tweets) 1417 494 286 637
Train 2016 (Tweets) 5355 2749 762 1844
Dev 2016 (Tweets) 1269 568 214 487
DevTest 2016 (Tweets) 1779 883 276 620
Test: Twitter2016 20632 7059 3231 10342
Test: Twitter2015 2390 1038 365 987
Test: Twitter2014 1853 982 202 669
Test: Twitter2013 3813 1572 601 1640
Test: SMS2013 2093 492 394 1207
Test: LiveJournal2014 1142 427 304 411
Test: Tw2014Sarcasm 86 33 40 13

Data preparation. Before extracting features, the
tweets were preprocessed using the following proce-
dure:

• URLs and usernames were substituted by a re-
placement token
• The text was lowercased
• The NLTK twitter tokenizer was employed in

System I and a customized version of the CMU
ARK Twitter Part-of-Speech Tagger (Gimpel et
al., 2011) in System II.

4 Results

The F-1 score was computed by the competition or-
ganizers as evaluation measure. As a result, the pre-
sented system was ranked 1st out of 34 participants,
with an F1-score of 63.30 on the Twitter-2016 test
set. See (Nakov et al., 2016) for further details.

Table 4 summarizes the results of individual sub-
systems, as well as the final system on each test set.
For each test set the best score is marked in bold
face. In case of the Twitter2016 and Twitter2015
test sets we marked the best performing subsystem
in italics. For System I (S1), we observed that during
the supervised phase, the F-1 scores measured on the
different test sets presented large deviations. Hence,
to improve robustness, we considered six different
models of S1 (S1a, ..., S1f), varying the number
of epochs between 12 and 25 during the supervised
phase, stopping determined by the validation score
on different sets. For System II (S2), the number of
epochs, equal to 12, is determined by the one achiev-
ing the highest score on the DevTest2016 set.

The final system (FS) using the meta-classifier
trained on the outputs of systems S1a-f and S2,
achieves the highest accuracy on the 2016 test set
with the competition-winning F1-score of 63.30%.
These results improve the score of the best perform-
ing subsystem (S1b) by 0.57 points. For the 2015
test set, FS shows an improvement of 0.35 points
with respect to the score of the best subsystem (S1f).

S1a S1b S1c S1d S1e S1f S2 FS
Twitter2016 60.47 62.73 61.89 60.58 57.19 62.20 62.36 63.30
Twitter2015 64.26 65.80 64.80 64.20 61.02 66.70 66.63 67.05
Twitter2014 73.98 74.60 75.70 74.15 69.12 72.00 72.45 71.55
Twitter2013 71.52 70.10 70.90 71.50 67.00 68.00 70.05 70.01
LiveJournal2014 73.86 70.57 72.54 74.00 71.32 68.00 70.86 69.51
Tw2014Sarcasm 57.84 52.04 51.50 57.84 62.00 57.30 62.74 56.63

Table 3: Overall results of the proposed subsystems. S1: Sys-

tem(s) I; S2: System II; FS: Final system, using the meta-

classifier. Best (second-best) results are highlighted in bold (un-

derlined) face.

1127



5 Conclusion

We described a deep learning framework to pre-
dict the sentiment polarity of short phrases, such
as tweets. The proposed approach is based on an
ensemble of Convolution Neural Networks and re-
lies on a significantly large amount of data for the
distant-supervised phase. The final random forest
classifier resulted in state-of-the-art performance,
ranking 1st in the SemEval-2016 competition for the
task of Message Polarity Classification.

Acknowledgments. We thank Aliaksei Severyn
and Mark Cieliebak for fruitful discussions.

References

James Bergstra, Olivier Breuleux, Frederic Frédéric
Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume
Desjardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. 2010. Theano: a CPU and GPU math
compiler in Python. Proceedings of the Python for Sci-
entific Computing Conference (SciPy), (Scipy):1–7.

Sharan Chetlur and Cliff Woolley. 2014. cuDNN: Effi-
cient Primitives for Deep Learning. arXiv preprint.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael
Heilman, Dani Yogatama, Jeffrey Flanigan, and
Noah A. Smith. 2011. Part-of-Speech Tagging for
Twitter: Annotation, Features, and Experiments. In
HLT ’11 - Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Short-
papers, number 2, pages 42–47.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1:12.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The WEKA Data Mining Software: An Update.
In SIGKDD Explorations.

Rie Johnson and Tong Zhang. 2015. Semi-supervised
Convolutional Neural Networks for Text Categoriza-
tion via Region Embedding. In NIPS 2015 - Advances
in Neural Information Processing Systems 28, pages
919–927.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A Convolutional Neural Network for
Modelling Sentences. In ACL - Proceedings of the

52nd Annual Meeting of the Association for Compu-
tational Linguistics, pages 655–665, Baltimore, Mary-
land, USA.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In EMNLP 2014 - Empiri-
cal Methods in Natural Language Processing, pages
1746–1751.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013a.
Exploiting Similarities among Languages for Machine
Translation. arXiv.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositionality.
In NIPS 2013 - Advances in Neural Information Pro-
cessing Systems 26, pages 3111–3119.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified lin-
ear units improve restricted boltzmann machines. In
ICML 2010 - Proceedings of the 27th International
Conference on Machine Learning, pages 807–814.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Veselin Stoy-
anov, and Fabrizio Sebastiani. 2016. SemEval-2016
task 4: Sentiment analysis in Twitter. In Proceedings
of the 10th International Workshop on Semantic Eval-
uation, SemEval ’16, San Diego, California, June. As-
sociation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global Vectors for Word
Representation. Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1532–1543.

Jonathon Read. 2005. Using emoticons to reduce depen-
dency in machine learning techniques for sentiment
classification. In Proceedings of the ACL student re-
search workshop, pages 43–48. Association for Com-
putational Linguistics.

Aliaksei Severyn and Alessandro Moschitti. 2015a.
Twitter Sentiment Analysis with Deep Convolutional
Neural Networks. In 38th International ACM SIGIR
Conference, pages 959–962, New York, USA, August.
ACM.

Aliaksei Severyn and Alessandro Moschitti. 2015b.
UNITN: Training Deep Convolutional Neural Net-
work for Twitter Sentiment Classification. In SemEval
2015 - Proceedings of the 9th International Workshop
on Semantic Evaluation.

Matthew D. Zeiler. 2012. ADADELTA: An Adaptive
Learning Rate Method. arXiv preprint.

1128


