Garuda & Bhasha at SemEval-2016 Task 11: Complex Word Identification
Using Aggregated Learning Models

Prafulla Kumar Choubey and Shubham Pateria
System Software
Samsung R & D Institute India Bangalore Pvt Ltd
Bangalore, Karanataka, India -560037

prafulla.ch,

Abstract

This paper describes aggregated learning
models for Complex Word Identification
(CW]) task in SemEval 2016. The work
focused on selecting the features that de-
termine complexity of words and used dif-
ferent combinations of support vector ma-
chine (SVM) and decision tree (DT) tech-
niques for classification. These classifiers
were pipelined with pre-processing and post-
processing blocks which helped improving ac-
curacy of systems, though had little impact on
recall. Four systems were evaluated on the test
set; SVM and DT systems by team Bhasha
achieved G score of 0.529 and 0.508 respec-
tively and SVM&DT and SVMPP systems by
team Garuda achieved G scores of 0.360 and
0.546 respectively.

1 Introduction

CWI constitutes the first stage in lexical simplifica-
tion (LS) pipeline (Specia et al., 2012). Performance
of any LS system highly relies on accurate identifi-
cation of complex words. (Shardlow, 2014) catego-
rized errors in LS into six types and two of them
(type 2A and 2B) are reflections of recall and preci-
sion of CWI system. The author concluded that type
2B errors occur with highest frequency, nearly 0.54,
followed by type 2A (0.11). Also only 0.1 of sim-
plifications were free from error. Thus, designing a
robust CWI system impacts LS task the most.

CWI has long been researched and used in LS
systems. (Paetzold, 2015) named some of the ap-
proaches used inclusive to LS task, like lexicon

1006

s.pateria@samsung.com

based approaches, frequency thresholding based ap-
proaches, word length thresholding and user driven
approaches. Trained classifiers have also been pro-
posed in literature like, (Shardlow, 2013) used SVM
as classifier on feature sets comprising of frequency,
length, synonym counts etc.

This work is extension to the method proposed by
(Shardlow, 2013). The proposed systems are built on
broader set of features and multiple classifiers have
been used individually or in aggregation to know
trade-off between precision and recall. These sys-
tems are trained solely on the training data released
by task organizers and no external resource has been
used, except the WordNet (Miller, 1995; Fellbaum,
1998).

The rest of paper is organized as follows, sec-
tion 2 describes the feature sets used. Section 3 de-
scribes the approaches used and submitted systems
performance w.r.t other participants. Finally, section
4 presents the conclusions and outlines some direc-
tions of future work.

2 Feature Sets

Selection of relevant feature is key to better perfor-
mance of a machine learning model. While in some
tasks, feature extraction is an obvious process, in
tasks like CWI its hard to determine features apt-
ness. So, in this work all the feature sets whose in-
clusion improves any of recall, precision or accuracy
were used. These features have been described be-
low.

Proceedings of SemEval-2016, pages 1006-1010,
San Diego, California, June 16-17, 2016. (©2016 Association for Computational Linguistics

2.1 Characters n-grams Frequency

These features are based on an assumption that char-
acter sequences that are frequently used should be
easier to be recognized compared to rarely used se-
quences. For instance, if it is required to choose
between Quixotic and Idealistic, idealistic would
be easier to remember. Probably, because ideal,
deal, idea are very commonly observed sequences,
while quix is a rarely used character sequence in
English dictionary. Given infinite possible character
sequences, this work limited the sequences to 300
most frequently used uni, bi and tri-grams of char-
acters.

2.2 Word’s Features

In most of the LS tasks, word frequency threshold-
ing has been used to determine its complexity (Brys-
baert and New, 2009). In our systems, we have
also included frequencies of words at positions [-2,-
1,1,2] relative to the word, which is accounted only
to observed higher accuracy.

We have also used Parts-of-Speech tag of target
word and the words at position [-2,-1,1,2] relative to
it as features. Brown corpus (Francis and Kucera,
1979) tagged with pos-tags used in the Penn tree-
bank (Marcus et al., 1993) project was used to cal-
culate trigram and emission probabilities for words
and their parts of speech. Using Viterbi algorithm
(Jurafsky and Martin, 2000) and probabilities calcu-
lated above, training and test sentences were tagged.
Inclusion of pos-tags as features are again accounted
to higher accuracy observed on validation set. The
pos-tags are quantized as their occurrence frequency
in combined training and testing datasets, table 1
contains the values.

Other word level features used are- word length
(Keskisdrkka, 2012), words position, ratio of vowels
and consonants, words stem length and frequency of
stemmed words.

2.3 WordNet

The objective of LS is to find an alternative to com-
plex word which is supposedly more common to tar-
get user. The words which have simpler synonyms
available are more likely to be recognized as com-
plex. For instance, succumb is likely to be complex
provided yield is used more frequently. To intro-

1007

Pos-tags | Values Pos-tags Values
{PRPS} | 0.000645 {WP} 0.000227
{VBG} 0.039401 {VBZ} 0.001063
{VBD} 0.005699 {DT} 0.001253
{VBN} 0.047874 {NN} 0.537558
{VBP} 0.000189 {FW} 0.000113
{WDT} 0. 000152 {TO} 0.000008
{JJ} 0.075610 {PRP} 0.000873
{RB} 0.024962 {other} | 0.0

Table 1: Pos-tags and the corresponding numerical values used

in Classifiers

duce this into our system, we used WordNet to find
synonyms of word and used word frequency relative
to its SynSets as an input feature. Like in case of
succumb, yield, succumb and yield have frequency
counts of 4 and O respectively. So the input feature
will be 0 [0 / (0+4)] for succumb and 1 [4 / (0+4)]
for yield.

3 Proposed Systems

We are proposing three stage pipelined systems for
CWI task, comprising of pre-processing, classifica-
tion by one or ensemble of trained models, and post-
processing stages. These stages are described below.

3.1 Pre-processing

This stage comprises of four preliminary checks that
directly classify words based on rules.

1. All the named entities are classified as non-
complex.

2. The words which dont belong to English are
classified as complex. We have used words
available in various corpora provided by nltk
package and English word list (Lawler, 1999)
for this.

3. Words with length less than 2 are classified as
non-complex.

4. Words with pos-tags CD, DT and TO as per
UPenn tag-sets are classified as non-complex.

3.2 Trained Classifiers

This stage consists of a trained classifier based
on features described in section 2. We submit-
ted four systems with classifiers trained using dif-
ferent classification algorithms. Systems submitted

SVM 1

SVM 2

Complex, if
expression
valueis 1

SVM 3

ﬁ
s(a)o « s(s)o +¥(a)o « v(S)o +

€(a)o « €(s)o +2{a)o « z{s)o + 1(a)o « T(s)o

DT3 =5
) svm4
O svm's >

Predicts whether word y Predicts whether,}
; v \4
is complexor not = SVMs output are

Correct or not.

Figure 1: HSVM&DT Architecture for CWI.

by team Bhasha were based on support vector ma-
chines (SVM) and decision tree (DT). We used stan-
dard classifiers available in scikit-learn package (Pe-
dregosa et al., 2011). Systems submitted by Garuda
team were based on hybrid of classifiers. They are
described below.

HSVM&DT: This is a hybrid model, inspired by
bagging ensembles, comprising of multiple SVMs
and DT for classifying words. We have used 5
SVMs with different training parameters (gamma,
kernel and C values) and 5 different DT classifiers.
SVMs perform classification of words as complex or
non-complex, while DTs classify the predictions of
SVM as correct or incorrect. Figure 1 explains the
architecture.

A pair of SVM and DT model works together to
classify the words. For each pair, training data is
divided into two sets; first set is used to train the
SVM and on second set, trained SVM is used to pre-
dict the output. In second set, if predicted output of
SVM is same as the actual word label, we define tar-
get output as 1 for DT classifier and other wise O.
With this new target output and input features same
as SVM, DT model is trained. Five such pairs were
trained, each trained on randomly sampled training
data. Random sampling allows learning more gener-
alized. This algorithm is described in figure 2. One
clear distinction of this aggregated model from con-
ventional bagging is in terms of combining method-
ology. Output of only those SVM classifiers are used
for which corresponding DT predicts 1.

1008

SVMPP: This model built on
CWI training_allannotations data. = Twenty sep-
arate SVMs were trained on each annotation
available in training data. It was designed with a
belief that this system would achieve higher recall,
though precision may be substantially low. In
training data, a word was defined as complex, if
any of the annotation was complex. However in our
design, we have calculated coefficients for all 20
classifiers that define the contribution of each SVM
classifier in final output. Also, output label for this
model was modified as {-1,1} instead of {0, 1}.
Detailed algorithm is described in figure 3.

18

HSVM&DT Algorithm

Given: Training Data S
fori=1to5:
Divide data in two sets Sy, S, in ratio 3:2
Train an SVM Classifier on S,
Predict class of X, € S), by trained SVM: Y;:
Generate training data for DT classifier:
ifY) ==Y,
Y, pr=1
else:

Y,u,DTzo
Train DT Classifier with X,,Y,, pr € S,
Output Hypothesis: 0 < XOg;)*Op[; =0
1, otherwise.

Figure 2: HSVM&DT Algorithm.

SVMPP Algorithm

Given: Training Data S;, i=1..20 #20 annotators

Output Pre-processing: Y’=-1, if Y=0
Y'=1,if Y=1

fori=1 to 20:
Train SVM Classifier SV C;, on S;.
Calculate \; & u; coefficients for classifier:
Ai = TP/(TP.+ EP) p; = TN./(T.N. +EN.)
T.P.— True Positive F.P.— False Positive
T.N.— True Negative F.N.— False Negative
Output Hypothesis:
0 <= Xf* Ogvci < 0;
1, otherwise.
where, f = \;, when Ogyc, ==1
f= i, when OSVC’Z- ==-1

Figure 3: SVMPP Algorithm.

As described in Figure 3, each SVM classifier has
two associated coefficients {\, p}. A defines the
precision of classifier in predicting non-complex
words and g defines precision for identifying
complex words.

3.3 Post-Processing

This stage comprises of final check to remove highly
probable miss-classifications.

1. Character bigrams (402 character bigrams were
present in training set) which were not ob-
served in training data but is present in test data
and has occurrence frequency less than 0.00005
are classified as complex (Ex: zt, kz etc.).

2. Words with occurrence frequency above 0.001
and labelled as non-complex (if label available)
in training data but vice versa by trained model,
are classified non-complex.

3.4 Performance Comparison

Table 2 compares the performance of our systems
with respect to performance statistics of all submit-
ted systems, including baselines. From the analysis,
it can be easily concluded that none of our systems
are very effective in deciding complexity of words.
Three of our systems- SVMPP, DT and SVM could
reach around average performances and were ranked
31, 38 and 41 based on G-Score among 52 systems.
The performances of SVM and SVMPP are almost
comparable to other SVM based submitted systems
and SVM seems to be less effective for CWI. But our
DT system failed in achieving performance scores
comparable to other DT and RFC based systems.
System HSVM&DT performed even worse than
individual SVM and DT classifiers and was ranked
48 among all the systems. To determine the rea-
sons, we analyzed the system’s performance on only
two features- word’s frequency and word’s length
and plotted the decision boundaries. And it was ob-
served that the system failed to achieve its objective
of using multiple classifiers to predict the complex-
ity of word and then deciding a classifier that has
highest confidence on its prediction. The main rea-
son for its failure was that all SVMs had almost over-
lapping decision boundaries. And the error in DTs
prediction further worsened the prediction.

1009

Systems Precision | Recall | Fscore | Gscore
maximum | 0.299 1 0.353 0.774
sv000gg 0.147 0.769 | 0.246 | 0.774
plujagh 0.289 0.453 | 0.353 0.608
average 0.114 0.606 | 0.173 0.560
s.d. [o] 0.065 0.252 | 0.081 0.194
svmpp 0.099 0.415 | 0.160 | 0.546
dt 0.118 0.387 | 0.181 0.529
svm 0.119 0.363 | 0.179 | 0.508
hsvm&dt | 0.112 0.226 | 0.149 | 0.360
minimum | 0.0 0.0 0.0 0.0

Table 2: Systems Performance Measures

HSVM&DT, however, can be a very effective
classifier for any task if we can manage to generate
non-overlapping decision boundaries for all SVMs
or any other constituent classifier. The performance
of this system, though, is open for examination and
needs to be explored further.

4 Conclusion

We tried several combinations of SVM and DT clas-
sifiers, but they could only achieve average of G-
scores of all the submitted systems. As concluded by
(Paetzold and Specia, 2016) in the CWI task descrip-
tion paper, DT and RFC perform better than most
of the submitted systems. Also, the authors con-
cluded that frequency measure possesses the highest
confidence in deciding complexity of words. In our
later study, we tried reducing the number of features
and it was found that by merely including word-
frequency, pos-tags, word-length and WordNet fea-
tures, and training a DT model on same training set,
system was able to achieve better G score on the test
set. So, average performance of our systems can be
mainly accounted to improper selection of features
for the task. Inclusion of too many features shad-
owed the impact of frequency feature. In our future
study, we plan to work on finding a suitable feature
selection method for CWI and than work on classi-
fier. Also as discussed before, failure of HSVM&DT
model in this task is mainly accounted to lack of di-
versity in classifiers. We will continue our work on
an ensemble classifier based on the principle of this
model.

References

Marc Brysbaert and Boris New. 2009. Moving be-
yond kucera and francis: a critical evaluation of cur-
rent word frequency norms and the introduction of a
new and improved word frequency measure for amer-
ican english. BEHAVIOR RESEARCH METHODS,
41(4):977-990.

Christiane Fellbaum, editor. 1998. WordNet An Elec-
tronic Lexical Database. The MIT Press, Cambridge,
MA ; London, May.

W. N. Francis and H. Kucera. 1979. Brown corpus
manual. Technical report, Department of Linguistics,
Brown University, Providence, Rhode Island, US.

Daniel Jurafsky and James H. Martin. 2000. Speech
and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and
Speech Recognition. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition.

Robin Keskisdarkkd. 2012. Automatic text simplification
via synonym replacement.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of english: The penn treebank. Comput. Linguist.,
19(2):313-330, June.

George A. Miller. 1995. Wordnet: A lexical database for
english. Commun. ACM, 38(11):39—41, November.
Gustavo H. Paetzold and Lucia Specia. 2016. Semeval
2016 task 11: Complex word identification. In Pro-
ceedings of the 10th International Workshop on Se-

mantic Evaluation (SemEval 2016).

Gustavo Paetzold. 2015. Reliable lexical simplifica-
tion for non-native speakers. In Proceedings of the
2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Stu-
dent Research Workshop, pages 9—16, Denver, Col-
orado, June. Association for Computational Linguis-
tics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-
2830.

Matthew Shardlow. 2013. A comparison of techniques
to automatically identify complex words. In ACL (Stu-
dent Research Workshop), pages 103—109. The Asso-
ciation for Computer Linguistics.

Matthew Shardlow. 2014. Out in the open: Finding
and categorising errors in the lexical simplification
pipeline. In Nicoletta Calzolari (Conference Chair),
Khalid Choukri, Thierry Declerck, Hrafn Loftsson,
Bente Maegaard, Joseph Mariani, Asuncion Moreno,

1010

Jan Odijk, and Stelios Piperidis, editors, Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), Reykjavik, Ice-
land, may. European Language Resources Association
(ELRA).

Lucia Specia, Sujay Kumar Jauhar, and Rada Mihalcea.
2012. Semeval-2012 task 1: English lexical simpli-
fication. In Sixth International Workshop on Semantic
Evaluation, *SEM, pages 347-355, Montréal, Canada.

