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Abstract

We introduce the SV000gg systems: two En-
semble Methods for the Complex Word Iden-
tification task of SemEval 2016. While the
SV000gg-Hard system exploits basic Hard
Voting, the SV000gg-Soft system employs
Performance-Oriented Soft Voting, which
weights votes according to the voter’s perfor-
mance rather than its prediction confidence,
allowing for completely heterogeneous sys-
tems to be combined. Our performance com-
parison shows that our voting techniques out-
perform traditional Soft Voting, as well as
other systems submitted to the shared task,
ranking first and second overall.

1 Introduction

In Complex Word Identification (CWI), the goal is
to find which words in a given text may challenge
the members of a given target audience. It is part of
the usual Lexical Simplification pipeline, which is
illustrated in Figure 1. As shown by the results ob-
tained by (Paetzold and Specia, 2013) and (Shard-
low, 2014), ignoring the step of Complex Word
Identification in Lexical Simplification can lead sim-
plifiers to neglect challenging words, as well as to re-
place simple words with inappropriate alternatives.

Various strategies have been devised to address
CWI and most of them are very simple in na-
ture. For example, to identify complex words, the
lexical simplifier for the medical domain in (El-
hadad and Sutaria, 2007) uses a Lexicon-Based ap-
proach that exploits the UMLS (Bodenreider, 2004)
database: if a medical expression is among the tech-
nical terms registered in UMLS, then it is complex.

Figure 1: Lexical Simplification pipeline

The complexity identifier for the lexical simplifier
in (Keskisärkkä, 2012), for Swedish, uses a thresh-
old over word frequencies to distinguish complex
from simple words. Recently, however, more so-
phisticated approaches have been used. (Shardlow,
2013) presents a CWI benchmarking that compares
the performance of a Threshold-Based strategy, a
Support Vector Machine (SVM) model trained over
various features, and a “simplify everything” base-
line.

(Shardlow, 2013)’s SVM model has shown
promising results, but CWI approaches do not tend
to explore Machine Learning techniques and, in par-
ticular, their combination. As an effort to fill this
gap, in this paper we describe our contributions to
the Complex Word Identification task of SemEval
2016. We introduce two systems, SV000gg-Hard
and SV000gg-Soft, both of which use straightfor-
ward Ensemble Methods to combine different pre-
dictions for CWI. These come from a variety of
models, ranging from simple Lexicon-Based ap-
proaches to more elaborate Machine Learning clas-
sifiers.
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2 Dataset and Evaluation

In the CWI task of SemEval 2016, participants were
asked to submit predictions on the complexity of
words based on the needs of non-native English
speakers. The setup of the task is as follows: given
a target word in a sentence, predict whether or not
a non-native English speaker would be able to un-
derstand it. For training, a joint and a decom-
posed dataset were provided. Both datasets consist
in 2, 237 instances containing a sentence, a target
word, its position in the sentence, and complexity
label(s). The decomposed dataset contains 20 bi-
nary complexity labels, provided by 20 annotators,
while the joint dataset contains only one label: 1 if
at least one of the 20 annotators did not understand
it (complex), and 0 otherwise (simple). Participants
were allowed to train their systems over either, both
or none of the datasets, as well as use any external
resources.

The test set contains 88, 221 instances and follows
the same format of the joint dataset, but was gen-
erated using only one word complexity label. The
difference between the training and test sets is that
while each instance in the training set was annotated
by 20 people, each instance in the test set was anno-
tated by only one person. The goal with this setup
was that of replicating a realistic scenario in Text
Simplification, where systems must predict the indi-
vidual preferences of a target audience based on the
overall needs of a population sample.

For evaluation, common metrics – Accuracy, Pre-
cision, Recall and F-score – are used, along with a
new metric designed specifically for CWI: the G-
score. The G-score consists of the harmonic mean
between Accuracy and Recall, and aims at captur-
ing the performance of a CWI approach to be used
within a Lexical Simplification system. The rea-
soning behind the metric is that an ideal CWI sys-
tem should avoid both false negatives and false pos-
itives, which is measured through Accuracy, and at
the same time capture as many complex words as
possible, which is measured through Recall. High
values on these two metrics would prevent a lexi-
cal simplifier from making unnecessary and possi-
bly erroneous word replacements and from neglect-
ing words which should be simplified.

3 System Overview

Our strategy explores the idea behind the popular
saying “two heads are better than one” for the CWI
problem. We believe that combining the “opinion”
of various distinct approaches to a given task can
yield better results than any of the individual ap-
proaches. This idea is not new for classification
tasks like ours, and have been thoroughly explored
in several ways. Strategies that combine multiple
Machine Learning classifiers are often referred to
as Ensemble Methods. Such methods range from
very simple solutions, such as Hard Voting, in which
labels are determined based on how many times
they were predicted by the classifiers, to very elabo-
rate approaches, such as Random Forests (Breiman,
2001) and Gradient Boosting (Friedman, 2001).

The strategy we employ consists of a variant of
Soft Voting, in which the class of a given instance is
determined as in Equation 1.

cf = argmax
c

∑

s∈S
T (s, c) (1)

In traditional Soft Voting, cf is the selected class,
c is one of the possible classes in a classification
problem, S the collection of systems considered,
and T a confidence estimate, i.e. a function that ex-
presses how confident system s is that c is the cor-
rect class. Its goal is to increment Hard Voting by
incorporating the systems’ classification confidence
in the decision process, hopefully making for a more
reliable way of exploiting their strengths and weak-
nesses.

Although sensible in principle, Soft Voting might
not be able to effectively combine systems if they do
not have a reasonably uniform way of determining
the confidence on their predictions. The presence
of over-optimistic or over-pessimistic systems may
skew the results severely, and hence make the re-
sulting classifier have worse performance than that
of the best system among those considered in the
voting. Another clear limitation of traditional Soft
Voting is that it cannot include systems which sim-
ply cannot estimate the confidence level of their pre-
diction. Lexicon-Based CWI approaches such as the
ones of (Elhadad and Ph, 2006) and (Elhadad and
Sutaria, 2007), for example, predict that a word is
simple if it is present in a certain vocabulary. These
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approaches tend to be very effective in certain con-
texts, but can only produce binary confidence esti-
mates: if the word is in the vocabulary, then it is
100% sure the word is simple, if not, it is 100% sure
the word is complex.

In order to address these limitations, we exploit
Performance-Oriented Soft Voting (Georgiou and
Mavroforakis, 2013). Instead of using the systems’
summed confidence to predict a label, it uses their
performance score over a certain validation dataset.
Formally, we decompose function T from Equa-
tion 1 into the two functions illustrated in Equa-
tion 2.

cf = argmax
c

∑

s∈S
P (s, d) ∗D(s, c) (2)

In Equation 2, P represents the score of system s
over a certain dataset d given a certain performance
metric, such as Precision, Recall, F1, Accuracy, etc.
Function D, on the other hand, outputs value 1 if
system s has predicted c for the classification prob-
lem in question, and 0 otherwise.

This setup works under the assumption that the
systems’ performance under a validation dataset is
a reliable surrogate for confidence predictions, and
allows for any type of systems to be combined,
whether or not they are homogeneous in their way
of predicting classes.

In what follows, we described the features and
settings used in the creation of our two CWI sys-
tems: SV000gg-Hard and SV000gg-Soft. While
SV000gg-Hard uses basic Hard Voting, SV000gg-
Soft uses Performance-Oriented Soft Voting. Since
both of them combine a series of sub-systems, to
avoid confusion, we henceforth refer to these sub-
systems as “voters”.

3.1 Features

Our voters use a total of 69 features. They can be
divided in four categories:

• Binary: If a target word is part of a cer-
tain vocabulary, then it receives label 1, oth-
erwise, 0. We extract vocabularies from Sim-
ple Wikipedia (Kauchak, 2013), Ogden’s Basic
English (Ogden, 1968) and SubIMDB (Paet-
zold, 2015).

• Lexical: Includes word length, number of
syllables, number of senses, synonyms, hy-
pernyms and hyponyms in WordNet (Fell-
baum, 1998), and language model probability
in Wikipedia (Kauchak and Barzilay, 2006),
Simple Wikipedia and SubIMDB.

• Collocational: Language model probabilities
of all n-gram combinations with windows w<
3 to the left and right of the target complex
word in Wikipedia, SUBTLEX (Brysbaert and
New, 2009), Simple Wikipedia and SubIMDB.

• Nominal: Includes the word itself, its POS tag,
both word and POS tag n-gram combinations
with windows w < 3 to the left and right, and
the word’s language model backoff behavior
(Uhrik and Ward, 1997) according to a 5-gram
language model trained over Simple Wikipedia
with SRILM (Stolcke and others, 2002).

In order for language model probabilities to be
calculated, we train a 5-gram language model for
each of the aforementioned corpora using SRILM
(Stolcke and others, 2002). Nominal features were
obtained with the help of LEXenstein (Paetzold and
Specia, 2015).

3.2 Voters
We train a total of 21 voters which we have grouped
in three categories:

• Lexicon-Based (LB): If a word is present in
a given vocabulary of simple words, then it
is simple, otherwise, it is complex. We train
one Lexicon-Based voter for each binary fea-
ture described in the previous Section.

• Threshold-Based (TB): Given a certain fea-
ture, learns the threshold t which best separates
complex and simple words. In order to learn
t, it first calculates the feature value for all in-
stances in the training data and obtains its mini-
mum and maximum. It then divides the interval
into 10, 000 equally sized parts, and performs
a brute force search over all 10, 000 values to
find the one which yields the highest G-score
over the training data. We train one Threshold-
Based voter for each lexical feature described
in the previous Section.
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System Accuracy Precision Recall F-score G-score
All Complex 0.047 0.047 1.000 0.089 0.089
All Simple 0.953 0.000 0.000 0.000 0.000
(LB) SubIMDB 0.913 0.217 0.332 0.262 0.487
(LB) Ogden’s 0.248 0.056 0.947 0.105 0.393
(LB) Wikipedia 0.047 0.047 1.000 0.089 0.090
(LB) Simple Wikipedia 0.953 0.241 0.002 0.003 0.003
(TB) Probability: Wikipedia 0.536 0.084 0.901 0.154 0.672
(TB) Probability: Simple Wiki 0.513 0.081 0.902 0.148 0.654
(TB) Number of Hypernyms 0.572 0.076 0.728 0.137 0.641
(TB) Probability: SUBTLEX 0.492 0.077 0.896 0.142 0.636
(TB) Probability: SubIMDB 0.445 0.072 0.912 0.133 0.598
(TB) Number of Senses 0.436 0.068 0.861 0.125 0.579
(TB) Number of Hyponyms 0.384 0.065 0.906 0.121 0.539
(TB) Length 0.332 0.057 0.852 0.107 0.478
(ML) Decision Trees 0.805 0.158 0.733 0.260 0.767
(ML) Adaptive Boosting 0.799 0.153 0.728 0.253 0.762
(ML) Random Forests 0.826 0.170 0.698 0.273 0.756
(ML) Gradient Boosting 0.802 0.147 0.672 0.241 0.731
(ML) Multi-Layer Perceptron 0.691 0.105 0.741 0.183 0.715
(ML) Passive Aggressive Learning 0.852 0.171 0.562 0.262 0.677
(ML) Conditional Random Fields 0.534 0.076 0.808 0.140 0.643
(ML) Stochastic Gradient Descent 0.648 0.057 0.423 0.101 0.512
(ML) Support Vector Machines 0.715 0.061 0.357 0.105 0.476

TALN-RandomForest WEI 0.812 0.164 0.736 0.268 0.772
UWB-All 0.803 0.157 0.734 0.258 0.767
PLUJAGH-SEWDF 0.795 0.152 0.741 0.252 0.767
JUNLP-NaiveBayes 0.767 0.139 0.767 0.236 0.767
HMC-RegressionTree05 0.838 0.182 0.705 0.290 0.766
HMC-DecisionTree25 0.846 0.189 0.698 0.298 0.765
JUNLP-RandomForest 0.795 0.151 0.730 0.250 0.761
MACSAAR-RFC 0.825 0.168 0.694 0.270 0.754
TALN-RandomForest SIM 0.847 0.186 0.673 0.292 0.750
MACSAAR-NNC 0.804 0.146 0.660 0.240 0.725
Pomona-NormalBag 0.604 0.095 0.872 0.171 0.714
Melbourne-runw15 0.586 0.091 0.870 0.165 0.701
UWB-Agg 0.569 0.089 0.885 0.161 0.693
Pomona-GoogleBag 0.568 0.088 0.881 0.160 0.691
IIIT-NCC 0.546 0.084 0.880 0.154 0.674
LTG-System2 0.889 0.220 0.541 0.312 0.672
MAZA-A 0.773 0.115 0.578 0.192 0.661
Melbourne-runw3 0.513 0.080 0.895 0.147 0.652
Sensible-Baseline 0.591 0.078 0.713 0.140 0.646
ClacEDLK-ClacEDLK-RF 0.6 0.688 0.081 0.548 0.141 0.610
PLUJAGH-SEWDFF 0.922 0.289 0.453 0.353 0.608
IIIT-NCC2 0.465 0.071 0.860 0.131 0.604
ClacEDLK-ClacEDLK-RF 0.5 0.751 0.090 0.475 0.152 0.582
MAZA-B 0.912 0.243 0.420 0.308 0.575
AmritaCEN-w2vecSim 0.627 0.061 0.486 0.109 0.547

Soft Voting 0.780 0.125 0.615 0.207 0.688
SV000g-Soft 0.779 0.147 0.769 0.246 0.774
SV000g-Hard 0.761 0.138 0.787 0.235 0.773

Table 1: Performance scores. Separated by double horizontal lines are three system groups: our voters, other systems submitted to

the SemEval task, and our Ensemble solutions.
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• Machine-Learning-Assisted (ML): Learn a
binary classification model from the training
data using a Machine Learning algorithm. We
build models using the following seven algo-
rithms in the scikit-learn toolkit (Pedregosa et
al., 2011):

1. Support Vector Machines
2. Passive Aggressive Learning
3. Stochastic Gradient Descent
4. Decision Trees
5. Ada Boosting
6. Gradient Boosting
7. Random Forests

Additionally, we use Keras1 to otrain a Multi-
Layer Perceptron voter. Its architecture, in-
cluding number and size of hidden-layers, was
decided through 5-fold cross-validation over
the training set. The aforementioned models
use as input all binary, lexical and colloca-
tional features. Finally, we also train a Con-
ditional Random Field model using CRFSuite
(Okazaki, 2007). It uses as input all nomi-
nal features described in the previous Section.
The hyper-parameters of all Machine Learning-
assisted voters are determined through 5-fold
cross-validation over the G-score.

We select the number of the top G-score systems
to be considered through 5-fold cross-validation
over the joint dataset. For completion, we also in-
clude a traditional Soft Voting system that combines
Machine Learning approaches only, given that the
others do not have well-established ways of calcu-
lating prediction probability estimates.

4 Results

Table 1 illustrates the performance scores of all in-
dividual voters, along with the 25 best performing
systems in the CWI task, a standard Soft Voting ap-
proach, and our two SV000gg systems. Despite their
simplicity, our system voting strategies are the two
most effective CWI solutions submitted to SemEval
2016, having both obtained considerably higher G-
scores than traditional Soft Voting. These results

1http://keras.io

show the importance of finding clever ways to com-
bine distinct strategies for a task, since, by not con-
sidering Lexicon and Threshold-Based voters, the
traditional soft voter suffered a considerable loss in
G-score.

The results of the individual voters reveal that De-
cision Trees and Ensemble Methods achieve notice-
ably higher performance than the Multi-Layer Per-
ceptron, which have been used as state-of-the-art
solutions to various tasks. Another surprise comes
with the scores of Threshold-Based voters, which
offer competitive performance in comparison to Ma-
chine Learning techniques. The performance of our
Conditional Random Field voter suggest that nomi-
nal features are not as reliable as numeric features in
predicting word complexity.

The effectiveness of Ensemble Methods is further
highlighted by the scores of ours’ and others’ solu-
tions for the SemEval task: precisely 50% of the top
10 systems use some type of Ensemble.

5 Conclusions

We have presented our contributions to the Com-
plex Word Identification task of SemEval 2016: the
SV000gg systems, which exploit two types of sys-
tem Ensemble voting schemes. Along with the typ-
ical Hard Voting, we employ Performance-Oriented
Soft Voting, which diverges from traditional Soft
Voting by weighting votes not by their prediction
confidence, but rather by overall system perfor-
mance.

Our performance comparison shows how effec-
tive our voting strategies can be: they top the rank-
ings in the SemEval task, outperforming even elabo-
rate Ensemble strategies. We hope that our approach
will serve as a reliable alternative to other problems
in Natural Language Processing and beyond.

In the future, we also intend to explore the use
of Gaussian Processes and Multi-Task Learning for
Complex Word Identification.

References
O. Bodenreider. 2004. The unified medical language

system (umls): integrating biomedical terminology.
Nucleic acids research, 32.

Leo Breiman. 2001. Random forests. Machine Learn-
ing, 45:5–32.

973



Marc Brysbaert and Boris New. 2009. Moving be-
yond kucera and francis: a critical evaluation of cur-
rent word frequency norms and the introduction of a
new and improved word frequency measure for amer-
ican english. Behavior research methods, 41(4):977–
90, December.

Noemie Elhadad and D Ph. 2006. Comprehending tech-
nical texts : Predicting and defining unfamiliar terms.
pages 239–243.

Noemie Elhadad and Komal Sutaria. 2007. Mining a
lexicon of technical terms and lay equivalents. pages
49–56.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Jerome H Friedman. 2001. Greedy function approxima-
tion: a gradient boosting machine. Annals of statistics,
pages 1189–1232.

Harris V Georgiou and Michael E Mavroforakis. 2013.
A game-theoretic framework for classifier ensembles
using weighted majority voting with local accuracy es-
timates. arXiv preprint arXiv:1302.0540.

David Kauchak and Regina Barzilay. 2006. Paraphras-
ing for automatic evaluation. In Proceedings of the
2006 NAACL, pages 455–462.

David Kauchak. 2013. Improving text simplification lan-
guage modeling using unsimplified text data. In Pro-
ceedings of the 51st ACL, pages 1537–1546.

R Keskisärkkä. 2012. Automatic text simplification via
synonym replacement.

Charles Kay Ogden. 1968. Basic English: international
second language. Harcourt, Brace & World.

Naoaki Okazaki. 2007. CRFsuite: a fast im-
plementation of conditional random fields.
http://www.chokkan.org/software/crfsuite/.

Gustavo H. Paetzold and Lucia Specia. 2013. Text sim-
plification as tree transduction. In Proceedings of the
9th STIL.

Gustavo Henrique Paetzold and Lucia Specia. 2015.
Lexenstein: A framework for lexical simplification. In
Proceedings of The 53rd ACL.

Gustavo Henrique Paetzold. 2015. Reliable lexical sim-
plification for non-native speakers. In Proceedings of
the 2015 NAACL Student Research Workshop.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830.

Matthew Shardlow. 2013. A comparison of techniques to
automatically identify complex words. In Proceedings
of the 51st ACL Student Research Workshop, pages
103–109.

Matthew Shardlow. 2014. Out in the open: Finding
and categorising errors in the lexical simplification
pipeline. In Proceedings of the 9th LREC.

Andreas Stolcke et al. 2002. Srilm - an extensible lan-
guage modeling toolkit. In Interspeech.

C Uhrik and W Ward. 1997. Confidence metrics based
on n-gram language model backoff behaviors. In Pro-
ceedings of EUROSPEECH.

974


