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Abstract

This paper describes our submission to the
Complex Word Identification (CWI) task in
SemEval-2016. We test an experimental ap-
proach to blindly use neural nets to solve the
CWI task that we know little/nothing about.
By structuring the input as a series of se-
quences and the output as a binary that indi-
cates 1 to denote complex words and O other-
wise, we introduce a novel approach to com-
plex word identification using Recurrent Neu-
ral Nets (RNN). We also show that it is pos-
sible to simply ensemble several RNN clas-
sifiers when we are unsure of the optimal
hyper-parameters or the best performing mod-
els using eXtreme gradient boosted trees clas-
sifiers. Our systems submitted to the CWI
task achieved the highest accuracy and F-score
among the systems that uses neural networks.

1 Introduction

The Deep Learning Tsunami has hit the Natu-
ral Language Processing (NLP) and Computational
Linguistics field (Manning, 2016). Deep neural nets
has shown to be the ultimate hammer in various NLP
shared tasks, systems trained on neural nets often
emerge as the top systems and/or beat state-of-the-
art performance (Collobert et al., 2011; Mikolov et
al., 2013; Pennington et al., 2014; Levy et al., 2014;
Shazeer et al., 2016; Gupta et al., 2015; Jean et al.,
2015; Kreutzer et al., 2015; Sultan et al., 2014; Sul-
tan et al., 2015)

In the concluding remarks of the Google’s Deep
Learning course on Udacity!, Vincent Vanhoucke

"https://www.udacity.com/course/deep-learning—ud730
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said, “What’s really cool about those [neural net ap-
plication] examples is that you don’t have to know
much about the problem you're trying to solve”.
Armed with basic knowledge of deep learning and
neural nets and almost zero familiarity of the prob-
lem, we attempt to treat the Complex Word Iden-
tification (CWI) task as a binary classification task
using Long Short-Term Memory (LSTM) Recur-
rent Neural Nets (RNN) with Gated Recurrent Units
(GRU).

2 Neural Network and Deep Learning

Neural Networks are powerful at modelling various
modalities, e.g. signals, text, images, videos. As
the name suggests, neural network is inspired by the
brain’s synaptic transmission mechanism that trans-
mits signalling molecules (aka neurotransmitters) to
different signal receptors (aka neurons) throughout
our body. Metaphorically, we can emulate a neu-
ron as a computational unit and consider the neuro-
transmitters as real number inputs and outputs that
pass from a neuron to another. Each input to a neu-
ron comes with a associated weight and the neuron
will process the different inputs (often by summing
them) and passing it to a non-linear function which
will provide an output value.

For instance, we can think of a neuron as a typi-
cal AND/OR logic gate. Given two binary inputs x1
and x2 and a bias unit with input 1 and a varying
weights, we pass it to a neuron that sums the prod-
uct of the weights and input and passes the sum to a
non-linear function that outputs a boolean y value of
0 if the sum is below 0 and 1 if the sum is above 0.

From the left graph and table in Figure 1, we see
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Figure 1: Single Neuron to Emulate an OR Gate (left) and AND Gate (right)
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Figure 2: Emulate an XOR Gate with Feed-forward Network
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that the neuron emulates an OR logic gate where it
outputs 1 when either of the input is a positive input
and outputs 0 when both inputs are Os. Similarly,
right graph and table in Figure 1 presents a neural
depiction of a AND logic gate.

If we consider the 2nd row in the left table of Fig-
ure 1, the bias with the value of 1 and inputs x; =0
and z; = 1 are fed into neuro to produce the y out-
put. Within the neuron, it first sums the inputs and
the associated weights up (i.e. wg * bias + w1 * x
+ w; * x1). Then using a non-linear thresholding
function, the neuron outputs y = 1 since the sum is
larger than 0. Thus the neuron fulfils the function of
an OR that accepts a 1 and O input bit to produce a
positive bit.

The problem gets more complicated when we
want to use neurons to emulate an exclusive OR XOR
logic gate, to get a positive binary output, only one
of the inputs can be positive and XOR returns a nega-
tive output when there are more than one or less than
one positive input(s).

We can split the XOR problem into small logical
expressions:

XOR = [z1 AND NOT 2] OR [NOT 1 AND z5]

As shown in Figure 2, we can emulate an XOR
gate by stacking two layers of neurons. On the first
layer, we solve for

(i) 21 torepresent [x7 AND NOT x2] with weights
-0.5, 1 and -1 attached to the bias, z1 and xo

(i1) 29 to represent [NOT x; AND xo] with weights
-0.5, -1 and 1 attached to the bias, x1 and x5.

At the second layer, we apply the same weights
we use for the OR gates and feed z; and z» as the
input to produce the XOR outputs. Interestingly, if
we look at the first layer, we notice that the 27 and 29
will never both be 1s. Often the network architecture
we use to solve the XOR example is referred to as a
feed-forward multi-layered network.

The logic gates examples motivate the simple use
of single neurons and the effect of stacking layers of
neurons to produce the desired outcome?. Hence the
notion, “Deep Learning”.

>The logic gates examples are taken from Emily Fox
and Carlos Guestrin machine learning course on Coursera,
https://www.coursera.org/learn/ml-foundations
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In all the logic gate examples we have manually
assigned the weights that are associated with the
neurons and it perfectly predicts the desired XOR
outputs. In practice, these weights has to be trained
using pairs of input bits and their respective outputs.

The rest of the paper will not go through the neu-
ral network architecture used in our submission in
the same level of detail as this section. Goldberg
(2015) and Cho (2015) provides a great read on us-
ing deep learning and neural networks for NLP tasks
and the formal mathematical descriptions of how to
train the networks.

3 Recurrent Neural Net

A Recurrent Neural Net (RNN) is an architecture of
deep neural network that chains up neurons in a se-
quential manner. The Elman Network is the simplest
formulation of RNN; it allow arbitrarily sized struc-
tured inputs to be represented by a fixed-size vector
observing the structured properties of the input (EI-
man, 1990).
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Figure 3: Emulate an XOR Gate with RNN

Returning to the XOR problem, instead of using a
feed-forward multi-layered network, we can change
the problem into a sequential one. Figure 3 shows
how the inputs can be chained in a sequential man-
ner in candence, x1, 1, Y, 1, L1, Y, ... (input input
output, input input output, ...). And at the end of the
sequence, the network can predict the output of the
last set of inputs without an output.

QOO
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Figure 4: Training an RNN to solve XOR

Figure 4 presents a naive method to chain the in-
puts x;, outputs y and hidden units z; to train an
RNN and the dotted lines presents trainable weights.



Despite its simplicity, RNN produces competitive
results for sequence tagging (Xu et al., 2015) and
language modelling (Mikolov et al., 2010). How-
ever, it is hard to train effectively due to the vanish-
ing gradient problem; the gradients in the later steps
of the sequence quickly diminishes during back-
propagation (Rumelhart et al., 1988) and they don’t
reach the earlier inputs.

To solve the vanishing gradients problem,
Hochreiter and Schmidhuber (1997) introduced the
Long Short-Term Memory (LSTM). The intuition is
to introduce a “memory cell” to preserve the gra-
dients; at every input state, a gate is used to con-
trol how much of the new input should be kept in
the memory cell how much it should forget. Cho
et al. (2014) proposed a similar “memory” device,
Gated Recurrent Unit (GRU), to control that add ex-
tra weight matrices to learn what long-distance rela-
tionships to remember or forget.

4 Complex Word Identification

Complex Word Identification (CWI) is task of iden-
tifying difficult words in a text automatically. Usu-
ally, it is structured as a subtask prior to lexical sim-
plification where a difficult words from a text is sub-
stituted to simpler ones (Specia et al., 2012; Shard-
low, 2013). The inputs of the task is a target word
and the context sentence in which it occurs. For ex-
ample, given the underlined word and the context
sentence,

The short words math or maths are often
used for arithmetic , geometry or basic al-
gebra by young student and their schools.

The desired output for the inputs would either be
a 1 to indicate that the target word is complex and O
if the target word is not.

4.1 Complex Word Identification with RNN

Neural network has opened a Pandora box where
engineers can stack the network in different archi-
tectures to train their desired models for almost any
NLP task. The sequential nature of language pro-
duction fits the recurrent structure of the RNN and
engineers can easily redesign any NLP task into a
sequence prediction task.
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Knowing little about the task, we lemmatize and
lowercase the sentence® and restructure the CW1 in-
puts as a sequence where the target word is separated
by a placeholder symbol < s > followed by the con-
text sentence, €.g.

arithmetic < s > the short word math or
math are often use for arithmetic , geome-
try or basic algebra by young student and
their school .

Then we fit all the training instances into an RNN
network with GRU to output the binary labels. How-
ever, we are unsure of the optimal hyper-parameters
for the model, so we trained 180 models with vary-
ing embedding sizes (10, 20, 50, 100, 200, 1000),
GRU sizes (10, 20, 50, 100, 200, 1000) and no. of
epoch (1, 3,5,7, 10).

We select the top model with the lowest labelling
error on the training labels as our Baseline sub-
mission. Since we do not know the variance between
the training and evaluation data, we select outputs
from the top 5 models with the lowest training er-
ror and train an eXtreme Boosted Trees regressor
(Friedman, 2001; Chen and Guestrin, 2016) to pro-
duce a single output label.

The open-source implementation of our sys-
tem can be found on https://github.com/
alvations/stubboRNNess. It is based on the
Passage RNN* and XGBoost® Ensemble libraries.

5 Results

Table 1 presents the results of the best systems and
the neural network systems from the CWI task in
SemEval-2016 (Paetzold and Specia, 2016). We
have submitted our systems under the team name,
Sensible.

The CWI task was evaluated based on classic ac-
curacy, precision recall and F-score metric. Addi-
tionally, the organizers decided to account for the
harmonic mean between the accuracy and recall and
they called it the G-Score.

The top teams used a variety of heuristics
and classificatoin based techniques. PLUJAGH-
SEWDFF uses frequency thresholding where they

3Using lemmatizer from PyWSD (Tan, 2014)
*https://github.com/IndicoDataSolutions/Passage
>https://github.com/dmlc/xgboost



Team Submission Accuracy Precision Recall | F-Score G-Score
PLUJAGH SEWDFF 0.922 0.289 0.453 | 0.353 0.608
LTG System?2 0.889 0.22 0.541 | 0.312 0.672
SV000gg Soft 0.779 0.147 0.769 | 0.246 0.774
SV000gg Hard 0.761 0.138 0.787 | 0.235 0.773
Sensible Baseline 0.591 0.078 0.713 | 0.140 0.646
Sensible Combined 0.737 0.072 0.390 | 0.122 0.510
AmritaCEN  w2vecSim 0.627 0.061 0.486 | 0.109 0.547
CoastalCPH NeuralNet 0.693 0.063 0.398 | 0.108 0.506
AmritaCEN  w2vecSimPos | 0.743 0.060 0.306 | 0.100 0.434

Table 1: Results of Best (Upper) and Neural Network Systems (Lower) in the SemEval-2016 CWI Task

consider any word that occurs less than 147 times in
the simple English Wikipedia to be complex. Sim-
ilarly, LTG-System2 uses threshold features to train
a decision tree classifier. SV000gg combines 23 dif-
ferent systems uses soft and hard voting ensemble,
their pre-ensembled systems includes threshold- and
lexicon-based heuristics and machine learning clas-
sifiers trained on 69 distinct linguistic features.

CoastalCPH’s NeuralNet system extracted an ar-
ray of features (including parts-of-speech, frequen-
cies, character perplexity and embeddings) and they
train a deep neural network with 2 hidden layers.
AmritaCEN’s w2vecSim trained an SVM classifier
using Word2Vec embeddings and the similarity be-
tween the target word, in addition, they used char-
acter and token based features to train the classifier.
Their w2vecSimPossystem added a POS feature to
train the classifier.

Among the neural network systems, our baseline
system achieved the highest F- and G-score. We
are also the only team that restructured the target
word and sentence to train recurrent neural net to
predict the output label. One possible reason for the
poor performance of our systems is due to the train-
ing data size of the task. The training data contains
2,237 labelled instances while the test data contains
88,221 instances. Given more data, we believe that
our system can scale towards accuracies compara-
tive to the top systems.

Although our ensemble system performed poorly
in the harmonic scores, we see that it achieves rea-
sonably high accuracy close to the top systems. Our
ensemble system was penalized due to the low re-
call and rate. Provided that we have more training
data, the recall should proportionally increase and
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improve our ensemble system.

6 Conclusion

In this paper, we motivated the use of deep learning
and neural nets in NLP applications and introduced
basic notions of feed-forward and recurrent neural
nets through the XOR example. And as expected, we
can easily build a relatively competitive system with
little understanding of the task by restructuring the
inputs as a sequence to train an RNN classifier.

We have introduced a novel approach using RNN
to solve the complex word identification task and
showed that we can easily ensemble several RNN
classifiers if we are unsure of the optimal hyper-
parameters or the best performing models using ex-
treme gradient boosted trees classifiers.
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