UNBNLP at SemEval-2016 Task 1: Semantic Textual Similarity: A Unified
Framework for Semantic Processing and Evaluation

Milton King and Waseem Gharbieh and SoHyun Park and Paul Cook
Faculty of Computer Science, University of New Brunswick
Fredericton, NB E3B 5A3, Canada
{milton.king,waseem.gharbieh,sohyun.park,paul.cook}@unb.ca

Abstract

In this paper we consider several approaches
to predicting semantic textual similarity us-
ing word embeddings, as well as methods for
forming embeddings for larger units of text.
We compare these methods to several base-
lines, and find that none of them outperform
the baselines. We then consider both a super-
vised and unsupervised approach to combin-
ing these methods which achieve modest im-
provements over the baselines.

1 Introduction

Word embeddings (Mikolov et al., 2013) have re-
cently led to improvements in a wide range of
tasks in natural language processing. A number of
approaches to forming embeddings for sentences,
paragraphs, and documents have also recently been
proposed (e.g., Le and Mikolov, 2014; Kiros et al.,
2015). These methods seem particularly well suited
to the task of predicting semantic textual similarity
(STS), and indeed have been shown to work very
well on similar tasks (Kiros et al., 2015).

This paper describes the system of UNBNLP at
SemEval-2016 Task 1. We first implement sev-
eral baseline approaches to STS based on cosine
similarity of count-based vectors representing sen-
tences, with a variety of approaches to term weight-
ing. We then consider approaches drawing off of
word2vec (Mikolov et al., 2013), paragraph vectors
(Le and Mikolov, 2014), and skip-thoughts (Kiros
et al., 2015). We find that none of these approaches
improve over any of our baselines.

732

We then consider combining information from
these individual methods to measuring STS. We
consider an unsupervised approach based on the av-
erage of the predicted similarities for a number of
these individual approaches. We further consider a
supervised approach in which we train ridge regres-
sion with features corresponding to the similarities
from these individual methods. Each of these meth-
ods for combining information achieves modest im-
provements over the baselines.

2 Measuring short text similarity

We present several methods for measuring STS in
Section 2.1. We then present approaches to combin-
ing these methods in Section 2.2.

2.1 Individual methods

2.1.1 Baselines

We present three baseline methods. In all of these
baselines, each sentence in a pair of sentences is rep-
resented as a vector, where each dimension corre-
sponds to a word type (i.e., a word form).

In the first approach, referred to as BASELINE-
BIN, the dimensions hold binary values indicating
whether the corresponding type occurs in the sen-
tence. In the second approach, BASELINE-FREQ, the
dimensions hold the frequency of the correspond-
ing type in the sentence. For the third approach,
BASELINE-TF-IDF, each dimension holds the tf-idf
weight for the corresponding type in the sentence.
Idf values were calculated over a 2015 dump of En-
glish Wikipedia from 1 September 2015, which was
pre-processed using wp2txt' to remove markup.

"https://github.com/yohasebe/wp2txt

Proceedings of SemEval-2016, pages 732735,
San Diego, California, June 16-17, 2016. (©2016 Association for Computational Linguistics

For all baseline methods, the similarity between
two sentences is calculated as the cosine between the
vectors representing them. In these baseline meth-
ods, the documents are tokenized using an approach
suggested by Speriosu et al. (2011) — the text is
first split based on whitespace; for each token, if it
contains at least one alphanumeric character, then all
leading and trailing non-alphanumeric characters are
stripped. Stopwords are removed based on a stop-
word list,? and case folding is applied.

2.1.2 Word2vec

We considered two methods based on word em-
beddings from word2vec (Mikolov et al., 2013). For
each sentence, we formed a vector corresponding
to the element-wise summation, and product, of the
word embeddings for each token in that sentence.
We then measure the similarity of two sentences
as the cosine between their vector representations.
We refer to these methods as WORD2VEC-SUM and
WORD2VEC-PROD, respectively.

For this method, we used pre-trained word2vec
vectors provided by Google.> These vectors have
300 dimensions, and were trained on a corpus of
documents from Google News that contained ap-
proximately 100 billion tokens.

For this method, sentences were tokenized by
splitting on whitespace, and then removing non-
alphanumeric characters. The text was also case-
folded.

2.1.3 Paragraph vectors

Paragraph Vectors (Le and Mikolov, 2014) is an
extension of word2vec (Mikolov et al., 2013) to text
of arbitrary length. In our implementation, we used
the Distributed Memory Model of Paragraph Vec-
tors (PV-DM) to represent each sentence as a vec-
tor. The similarity between two sentences was then
computed as the cosine of their vector representa-
tions. We refer to this approach as PARAGRAPH-
VECTORS.

The gensim* implementation of the PV-DM
model was trained on a roughly 540 million to-
ken sample of English Wikipedia. To tokenize the

http://wuw.lextek.com/manuals/onix/
stopwordsl.html

*https://code.google.com/archive/p/word2vec/

*https://radimrehurek.com/gensim/

733

Wikipedia corpus, the text was first split based on
whitespace; then, all non-alphanumeric characters,
except for +, -, $ and %, were removed. The re-
maining tokens wore case-folded. Tokens that did
not have a Unicode encoding, or that occurred less
than 5 times in the corpus were removed. During
training, every paragraph in the corpus was treated
as a separate paragraph in the model.’

The dimensionality of the word and paragraph
representations was set to 400. A window size of
8 was used. The negative sampling parameter was
set to 20. The subsampling parameter was set to
107°. After training the model, the vector represent-
ing each sentence was inferred.

2.1.4 Skip-thoughts

Skip-thoughts (Kiros et al., 2015) can be viewed
as an extension of the word2vec skipgram model for
obtaining vector representations of sentences. Skip-
thoughts is primarily an encoder—decoder model
composed of gated recurrent units (GRUs). A GRU
(Cho et al., 2014) is a recurrent neural network used
for sequence modeling (Chung et al., 2014). It is
similar to long short-term memory (Hochreiter and
Schmidhuber, 1997), but with a simplified gating
architecture that does not include separate internal
memory cells. The encoder receives a sequence of
tokens from a sentence, and the decoder attempts
to predict the sentence before the input sentence,
and the sentence after it. Once the model has been
trained, the vector representation of a sentence can
be extracted from the learned encoder by inputting
the sequence of tokens that makes up the sentence.

We used the pre-trained combine-skip model pro-
vided by Kiros et al. (2015) to build the vector repre-
sentation of sentences. This produces a 4800 dimen-
sional vector for each sentence by concatenating the
vector representations from the uni-skip model and
the bi-skip model. The uni-skip model is a unidi-
rectional encoder that encodes the input tokens of a
sentence in their original order, and outputs a 2400
dimensional vector. The bi-skip model is a bidirec-
tional model that encodes the input tokens of a sen-
tence in their original order, and in their reversed or-
der, outputting a 1200 dimensional vector for each
direction. The similarity between two sentences is

5This model can be applied to various units of text, e.g.,
sentence, paragraph, document.

Method Answer—answer Headlines Plagiarism Post-editing Question—question All

BASELINE-BIN 0.50937 0.70636 0.80108 0.76370 0.61827 0.67881
BASELINE-FREQ 0.44204 0.72754 0.79604 0.79483 0.65749 0.68122
BASELINE-TF-IDF (Run 1) 0.45928 0.66593 0.75778 0.77204 0.61710 0.65271
WORD2VEC-PROD 0.39310 0.60667 0.71528 0.21306 0.10847 0.41322
WORD2VEC-SUM 0.13521 0.14328 0.23290 -0.02673 0.25153 0.14303
PARAGRAPH-VECTORS 0.41123 0.69169 0.60488 0.75547 -0.02245 0.50206
SKIP-THOUGTS 0.27148 0.23199 0.49643 0.48636 0.17749 0.33446
SKIP-THOUGTS-REG 0.28626 0.51019 0.66708 0.69947 0.40459 0.51299
AVERAGE (Run 2) 0.58520 0.69006 0.78923 0.82540 0.58605 0.69635
REGRESSION (Run 3) 0.55254 0.71353 0.79769 0.81291 0.62037 0.69940

Table 1: Pearson correlation for each method, on each dataset, as well as the weighted average correlation over all datasets (“All”).

The best method on each dataset, and over all datasets, is shown in boldface.

then computed by taking the cosine similarity of
their vector representations. This method is referred
to as SKIP-THOUGTS.

We further considered a supervised approach
based on skip-thought vectors. We again formed
a vector representing each sentence using the pre-
trained model provided by Kiros et al. Then, fol-
lowing Kiros et al., we represented each pair of sen-
tences as a vector consisting of the concatenation
of the componentwise product, and absolute differ-
ence, of the vectors representing the sentences. That
is, if ¢ and ¥’ are the d-dimensional skip-thought vec-
tors representing two sentences, we represent this
sentence pair as a 2d-dimensional vector consisting
of the concatenation of @ o ¥ and |@ — ¥]. We trained
ridge regression using gold-standard STS data from
2012, 2013 and 2015, and then used this model to
predict similarity for the test sentence pairs. We re-
fer to this model as SKIP-THOUGTS-REG. We imple-
mented this model after submitting our official runs.

2.2 Method combinations

We used two different methods — one unsupervised,
and one supervised — to combine the individual
methods in an effort to develop a stronger system.

For the unsupervised method, AVERAGE, we com-
puted the average of BASELINE-BIN, BASELINE-TF-
IDF, WORD2VEC-PROD, PARAGRAPH-VECTORS,
and SKIP-THOUGTS. We did not consider
BASELINE-FREQ here because it is quite similar to
BASELINE-BIN, which performed better on develop-
ment data.

For the supervised approach to combining indi-
vidual methods, we trained ridge regression over

734

the similarities produced by the following methods:
BASELINE-BIN, BASELINE-TF-IDF, PARAGRAPH-
VECTORS, and SKIP-THOUGTS. The ridge regres-
sion was trained using the gold standard data pro-
vided for STS tasks in 2012, 2013, and 2015; this
model was then used to predict similarities for sen-
tence pairs in the test data. We refer to this method
as REGRESSION.

3 Results

Results for each method, on each dataset, are shown
in Table 1. We first consider the baseline ap-
proaches. On development data from previous STS
tasks, BASELINE-TF-IDF gave higher correlations
than baselines based on word presence (BASELINE-
BIN) or word frequency (BASELINE-FREQ). More-
over, this was a challenging baseline to beat, and
was among the best methods we considered on the
development data. It was therefore submitted as
one of our official runs. However, on the test data,
BASELINE-TF-IDF had the lowest average correla-
tion of the three baseline approaches considered.

In terms of the methods based on word2vec, rep-
resenting a sentence as the componentwise prod-
uct of the vectors for the words in that sentence
(WORD2VEC-PROD) performed much better than
the approach based on vector addition (WORD2VEC-
SUM). PARAGRAPH-VECTORS outperformed both
word2vec approaches. However, none of these word
embedding-based methods performed as well as any
of the baselines.

Naively measuring similarity as the cosine be-
tween skip-thought vectors for the sentences in a
pair (SKIP-THOUGTS) led to relatively poor perfor-

mance. Training ridge regression based on features
derived from skip-thought vectors (SKIP-THOUGTS-
REG, described in Section 2.1.4) led to substantial
improvements, although again this approach did not
beat any of the baselines.

AVERAGE and REGRESSION — both submitted as
official runs — combine several of the individual
methods together, and both achieve correlations that
are, overall, better than those of any of the baselines.
However, the improvements are relatively modest.
Although there is some variation across the datasets,
AVERAGE and REGRESSION perform very similarly
overall. AVERAGE, however, has an advantage, in
that it is an unsupervised approach.

4 Conclusions

In this paper we first considered several baseline ap-
proaches to STS. We then considered approaches
based on word2vec, paragraph vectors, and skip-
thoughts. We found that none of these approaches
improved over any of the baselines. We further con-
sidered combining these approaches via averaging,
and a supervised approach based on regression, and
achieved modest improvements over the baselines.

Acknowledgments

This work is financially supported by the Natu-
ral Sciences and Engineering Research Council of
Canada, the New Brunswick Innovation Foundation,
and the University of New Brunswick.

References

Kyunghyun Cho, Bart van Merriénboer, Dzmitry
Bahdanau, and Yoshua Bengio. 2014. On
the properties of neural machine translation:
Encoder—decoder approaches. In Proceedings of
SSST-8, Eighth Workshop on Syntax, Semantics
and Structure in Statistical Translation. Doha,
Qatar, pages 103-111.

Junyoung Chung, Caglar Gulcehre, KyungHyun
Cho, and Yoshua Bengio. 2014. Empirical eval-
uation of gated recurrent neural networks on
sequence modeling. In Proceedings of Deep
Learning and Representation Learning Work-
shop: NIPS 2014. Montreal, Canada.

735

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735-1780.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Antonio Torralba, Raquel Ur-
tasun, and Sanja Fidler. 2015. Skip-thought vec-
tors. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems 28,
Curran Associates, Inc., pages 3276-3284.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Pro-
ceedings of the 31st International Conference on
Machine Learning. Beijing, China.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed repre-
sentations of words and phrases and their com-
positionality. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Wein-
berger, editors, Advances in Neural Information
Processing Systems 26, Curran Associates, Inc.,
pages 3111-3119.

Michael Speriosu, Nikita Sudan, Sid Upadhyay, and
Jason Baldridge. 2011. Twitter polarity classifica-
tion with label propagation over lexical links and
the follower graph. In Proceedings of the First
workshop on Unsupervised Learning in NLP. Ed-
inburgh, Scotland, pages 53—63.

