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Abstract

This paper presents our submissions for se-
mantic textual similarity task in SemEval
2016. Based on several traditional fea-
tures (i.e., string-based, corpus-based, ma-
chine translation similarity and alignmen-
t metrics), we leverage word embedding from
macro (i.e., first get representation of sen-
tence, then measure the similarity of sentence
pair) and micro views (i.e., measure the simi-
larity of word pairs separately) to boost perfor-
mance. Due to the various domains of train-
ing data and test data, we adopt three differ-
ent strategies: 1) U-SEVEN: an unsupervised
model, which utilizes seven straight-forward
metrics; 2) S1-All: using all available dataset-
s; 3) S2: selecting the most similar training
sets for each test set. Results on test sets show
that the unified supervised model (i.e., S1-All)
achieves the best averaged performance with a
mean correlation of 75.07%.

1 Introduction

Estimating the degree of semantic similarity be-
tween two sentences is the building block of many
Natural Language Processing (NLP) applications,
such as question answering, textual entailment, tex-
t summarization etc. Therefore, Semantic Textual
Similarity (STS) has received an increasing amoun-
t of attention in recent years, e.g., the STS tasks in
Semantic Evaluation Exercises have been held from
2012 to 2016.

To identify semantic similarity of sentence pairs,
most existing works adopt at least one of the follow-
ing feature types: 1) string based similarity (Bär et

al., 2012; Jimenez et al., 2012) which employs com-
mon functions to calculate similarities over string
sequences extracted from original strings, e.g., lem-
ma, stem, or n-grams sequences; 2) corpus based
similarity (Šarić et al., 2012) where distributional
models such as Latent Semantic Analysis (LSA),
are used to derive the distributional vectors of word-
s from a large corpus according to their occurrence
patterns, afterwards, similarities of sentence pairs
are calculated using these vectors; 3) knowledge
based method (Agirre et al., 2015b) which estimates
the similarities with the aid of external resources,
such as WordNet. Among them, Sultan et al. (2015)
leverage different word alignment strategies to bring
word-level similarity to sentence-level similarity.

Traditional NLP feature engineering often treat
sentence as a bag of words or term frequency, and
endeavor to evaluate the similarity according to the
co-occurrence of words or other replacement word-
s. For example, Zhao et al. (2014) built a super-
vised model using ensemble of heterogeneous fea-
tures and achieved great performance on STS Task
2014. However, it is difficult to evaluate semantic re-
latedness if all the word in both sentences is unique.
For example: A storm will spread snow over Shang-
hai; The earthquakes have shaken parts of Okla-
homa. These sentences have no words in common,
although they convey the similar information.

In this work, we first borrow the aforementioned
effective types of similarity measurements includ-
ing string-based, corpus-based, machine translation
similarity and alignment measures to capture the
semantic similarity between two sentences. Be-
sides, we also present our highly interpretable and
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hyper-parameter free word embedding features from
macro and micro views to boost the performance.
Then we adopt three different strategies of the us-
age of training data: 1) U-SEVEN: an unsupervised
model, which utilizes seven straight-forward metrics
(i.e., longest common sequence, alignment feature,
corpus-based feature, and others are all from word
embedding features); 2) S1-All: use all available
datasets and train a unified regression model after
deleting unnecessary features; 3) S2: select the most
similar training sets for each test set, according to
the source of the dataset, average sentence length,
and similarity distance (i.e., word mover’s distance,
discussed in Section 2.3).

The rest of this paper is organized as follows.
Section 2 describes various similarity measurements
used in our systems. Section 3 gives the datasets and
system setups. Results on training set and test set
will show in Section 4 and 5 respectively, and final-
ly conclusion is given in Section 6.

2 Semantic Similarity Measurements

Previous excellent work (Zhao et al., 2014; Sultan
et al., 2015) have shown great performance for STS
tasks. Following their works, we engineer the tra-
ditional widely used features for semantic similar-
ity measurements (i.e., string-based, corpus-based,
machine translation similarity and alignment mea-
sures). In this work, we also present our highly in-
terpretable and hyper-parameter free word embed-
ding features from macro and micro views to boost
the performance.

2.1 Preprocessing

Several text preprocessing operations are performed
before feature engineering: 1) Converting the con-
tractions to their formal writing, e.g., “doesn’t”
is rewritten as “does not”. 2) The WordNet-
based Lemmatizer implemented in Natural Lan-
guage Toolkit1 is used to lemmatize all words to
their nearest based forms in WordNet, e.g., “was”
is lemmatized to “be”. 3) Stanford CoreNLP (Man-
ning et al., 2014) is adopted to get the Part-Of-
Speech (POS) tag and Named Entity Recognition
(NER) tag.

1http://www.nltk.org

2.2 Traditional NLP Feature Engineering

2.2.1 String-Based Similarity
Length Features (len): We record the length in-

formation of given sentence pairs using the follow-
ing eight measure functions: |A|, |B|, |A−B|, |B−
A|, |A∪B|, |A∩B|, |A−B||B| , |B−A||A| , where |A| stand-
s for the number of non-repeated words in sentence
A.

Syntactic Features (pos): Since two sentences
with similar syntax structure convey similar mean-
ing, we estimate the similarities of syntax structure.
We firstly use Stanford CoreNLP toolkit (Manning
et al., 2014) to obtain the POS tags of each sen-
tence. Afterwards, we use eight measure functions
mentioned in the Length Features on the sets of POS
tags to calculate Syntactic Features.

Longest Common Sequence (lcs): In consider-
ation of the different length of sentence pairs, we
divide the maximum length of the common subse-
quence of two sentences by the length of the shorter
one.

n-grams Overlap Features (n-grams): We ob-
tain n-grams at three different level (i.e., the origi-
nal word level, the lemmatized word level and the
character level). Then Jaccard similarity is used for
calculating the similarity of these n-grams pairs. In
our experiments, n = {1, 2, 3} are used for the word
level whereas n = {2, 3, 4} are used for the charac-
ter level.

Named Entities Features (ner): Besides of the
surface similarities between words, we also calcu-
late the relatedness of named entities in two sen-
tences using lcs function. Seven types of named
entities (i.e., location, organization, data, mon-
ey, person, time, percent), recognized by Stanford
CoreNLP toolkit (Manning et al., 2014), are consid-
ered.

2.2.2 Machine Translation Similarity
Machine Translation (MT) evaluation metrics are

designed to assess whether the output of a MT sys-
tem is semantically equivalent to a set of reference
translations. The two given sentences are viewed as
one input and one output of a MT system, then we
get two MT scores of each MT measure (i.e., WER,
TER, PER, NIST, ROUGE-L, GTM-1). Two strate-
gies is employed to get MT similarity features, 1).
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average two MT scores in each MT measure; 2).
concatenate two MT scores in each MT measure.

2.2.3 Corpus-based Features
WordNet Rank Features (wordnet): The above

semantic similarities only consider the surface sim-
ilarities rather than their relations in corpus. Hence,
we use graph-based lexical relatedness, which per-
forms with a pre-existing Knowledge Base (KB)
(i.e., WordNet), to get the relations of words. Then
Personalized PageRank is applied on the Lexical
Knowledge Base (LKB) to rank the vertices of the
LKB. The details of the method are described in A-
girre et al. (2015b). It outputs a ranking vector of
the sentence over KB nodes and the values of the
weights are normalized so that all link weights of
particular headword sum to one. Finally, we calcu-
late the Cosine, Manhattan, Euclidean,
Jaccard of the two sentence vectors.

Vector Space Sentence Similarity (lsa): This
measure is motivated by the idea of compositionality
of distributional vector (Mitchell and Lapata, 2008).
we adopt two distributional word sets released by
TakeLab (Šarić et al., 2012), where Latent Seman-
tic Analysis (LSA) was performed on the New Y-
ork Times Annotated Corpus (NYT)2 and Wikipedi-
a. Then two strategies are used to convert the dis-
tributional meaning of words to sentence level: 1).
simply summing up. 2). using tf to weigh each word
vector.

2.2.4 Alignment Measures
(Sultan et al., 2015) used delicate word aligner to

compute proportion of aligned words across the two
input sentences. It aligned words based on their se-
mantic similarity in the two sentences, as well as the
similarity between local semantic contexts, which
relies on dependencies and surface-form neighbors.
The paraphrase Database (PPDB) (Ganitkevitch et
al., 2013) was used to identify semantically similar
words. Word pairs are aligned with greedy strategy,
in descending order of their similarity.

Global Alignment Features (global): Given sen-
tences S1 and S2, single proportion over all words is
computed over all words:

sim(S1, S2) =
na(S1) + na(S2)

n(S1) + n(S2)
(1)

2https://catalog.ldc.upenn.edu/LDC2008T19

where n(Si) is the number of non-repeated words in
Si, while na(Si) is the number of aligned content
words in Si.

Specific Alignment Features (pos-specific):
Taking weight of POS tag of aligned words into con-
sideration, score of aligned noun word pair is surely
higher than the adjective. Using this property, we
propose the specific alignment feature, to calculate
the aligned words proportion specifically according
to POS tag (i.e., noun, verb, adjective, adverb).

2.3 Word Embedding Feature Engineering

Recently, the distributed representations of words
(i.e., word embedding) learned by neural network-
s over a large raw corpus have been shown that
they performed significantly better than Latent Se-
mantic Analysis for preserving linear regularities a-
mong words (Mikolov et al., 2013). The training
on very large datasets allows the model to learn
complex word relationships such as vec(Berlin)−
vec(Germany) + vec(France) ≈ vec(Paris)
(Mikolov et al., 2013).

As discussed in Section 1, it is very hard to e-
valuate semantic similarity if no words in the sen-
tence pair in common. Obviously, word embedding
features supply the gap. For example, A storm will
spread snow over Shanghai; The earthquakes have
shaken parts of Oklahoma. while storm is similar
to earthquake and spread is analogous to shaken,
Shanghai and Oklahoma both are locations.

In order to evaluate semantic similarity of a sen-
tence pair, we define the function INFO is the se-
mantic information of a word or a sentence carried.

word embedding

Sentence 1
A

storm
will

spread
snow
over

Shanghai

Sentence 2
The

earthquakes
have

shaken
parts

of
Oklahoma

storm
earthquakes

spread

shaken

Shanghai

Oklahoma

S1

S2

Figure 1: An illustration of the word centroid distance. Points

in red is the word from sentence 1 (stopwords is ignored), while

blue from sentence 2. Si is the centroid of points from sentence

i.
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Thus the semantic similarity of sentence pair can be
regarded as the distance between their INFOs. In
other words, given sentence S1 and S2,

sts(S1, S2) = INFO(S1)− INFO(S2) (2)

where INFO(Si) is the semantic information of sen-
tence Si. We study the above formula from macro
and micro views.

Macro Information Distance: From macro view,
we first get the INFO of each sentence (i.e., seman-
tic information), and then calculate the distance be-
tween them. As follows:

sts(S1, S2) = INFO
(
f(wS1

1 , wS1
2 , . . . , wS1

len(S1)
)
)

− INFO
(
f(wS2

1 , wS2
2 , . . . , wS2

len(S2)
)
) (3)

where w
Sj

i is the word embedding of word i in
sentence j and function f is to obtain the sentence
representation from word embeddings, such as sum,
average or convolution. Assuming that if two sen-
tences are similar, one word in a sentence should
have the similar meaning word with another, we use
the centroid of word embedding to symbolise the
macro INFO of the sentence. As showed in Figure
1, Si represents for sentence i, and the distance be-
tween S1 and S2 represents for the similarity of the
sentence pair. What is more, storm and earthquakes
are the most important word in the sentence pair, we
surely should give them more weight. As they are
similar, the distance centroid tend to be close (the
dashed lines). We use idf from datasets to weigh the
importance.

Micro Information Distance: As for micro view,
we first get the INFO of each word, and evaluate the
distance between the sentence pair according to the

word embedding

Sentence 1
A

storm
will

spread
snow
over

Shanghai

Sentence 2
The

earthquakes
have

shaken
parts

of
Oklahoma

storm
earthquakes

spread

shaken

Shanghai

Oklahoma

Figure 2: An illustration of the word mover’s distance, an in-

stance of micro information distance.

INFO of words. The formula is described as Equa-
tion 4.

sts(S1, S2) =INFO(w
S1
1 ) + INFO(w

S1
2 ) + . . . + INFO(w

S1
len(S1)

)

−INFO(w
S2
1 )− INFO(w

S2
2 )− . . .− INFO(w

S2
len(S2)

)
(4)

Our goal is to incorporate the semantic similarity
between each word pairs into the micro informa-
tion distance of sentence. Here, we adopted word
mover’s distance (Kusner et al., 2015), the minimum
cumulative distance that all word in sentence 1 need
to travel to exactly match sentence 2, showed in Fig-
ure 2. For more details, see Kusner et al. (2015).

Word Embedding Features: Zhao et al. (2014)
shows that heterogenous feature outperform a sin-
gle feature, and we use three embeddings (Turian et
al., 2010; Mikolov et al., 2013; Pennington et al.,
2014) as our initial word vector input. Incidentally,
the distance is substitutable, and we replace it with
different measurements (i.e., cosine distance, Man-
hanttan distance, Euclidean distance, Pearson coef-
ficient, Spearman coefficient, Kendall tau coefficien-
t). Specially, because of the high time complexity of
word mover’s distance, we only train it on word2vec
(Mikolov et al., 2013), although other embeddings
are also plausible.

3 Experiments

3.1 Datasets

We collect all the datasets from 2012 to 2015 as
training data. Each dataset consists of a number of
sentence pairs and each pair has a human-assigned
similarity score in the range[0,5] which increases
with similarity. The datasets are collected from dif-
ferent but related domains. We briefly describe data
in Table 1, Refer Agirre et al. (2015a) for details. We
emphasize dataset with symbol * for that this dataset
appears both in training and test sets, which is very
useful to our third submission S2 (see Section 3.4
for more details).

3.2 Evaluation Measurement

In order to evaluate the performance of different al-
gorithms, we adopt the official evaluation measure,
i.e, Pearson correlation coefficient for each individ-
ual test set, and a weighted sum of all correlations is
used as final evaluation metric. It weights according
to the number of gold sentence pairs. The weight of
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Training Set Test Set
Dataset Input Gold Dataset Input Gold
MSRpar 1500 1500 answers-answers 1572 254

SMTeuroparl 1193 1193 plagiarism 1271 230
headlines* 3000 2250 headlines* 1498 249
SMTnews 399 399 postediting 3287 244
MSRvid 1500 1500 question-question 1555 209
OnWN 2061 2061 - - -
FNWN 189 189 - - -
images 2250 1500 - - -

deft-forum 450 450 - - -
deft-news 300 300 - - -

tweet-news 750 750 - - -
answers-forums 1500 375 - - -
answers-students 1500 750 - - -

belief 2000 375 - - -

All 19092 13592 All 9183 1186

Table 1: The statistics of all datasets for STS task. Dataset with

symbol * represents that this dataset appears both in training

and test sets.

a test set is equal to the rate of the gold sentences
pairs in all the gold sentences.

3.3 Learning Algorithm

We conduct a series of experiments using all fea-
tures discussed in Section 2.2 and 2.3 to obtain
the optimized learning algorithm. Three supervised
learning methods are explored: Support Vector Re-
gression (SVR), Random Forest (RF) and Gradi-
ent Boosting (GB). These supervised learning al-
gorithms are implemented using scikit-learn toolkit
(Buitinck et al., 2013).we use all the datasets from
STS Task 2015 as development data while others
from STS Task 2012 to 2014 as training data.

To configure the parameters in the regression al-
gorithm, i.e., the trade-off parameter c in SVR, the
number of trees nRF in RF and the number of boost-
ing stages nGB in GB, we make a grid search for c
in [0.01, 0.1, 1, 10], nRF from 5 to 100 with step 5
and nGB from 10 to 300 with step 10.

Regression belief answers headlines images answers Weighted
-students -forums Mean

SVR(c=1) 0.7413 0.7359 0.8168 0.8660 0.7400 0.7898
RF(n=40) 0.7466 0.7100 0.8200 0.8534 0.7398 0.7816

GB(n=140) 0.7655 0.7484 0.8439 0.8791 0.7469 0.8080
DLSCU-S1 0.7491 0.7725 0.8250 0.8644 0.7390 0.8015

Table 2: Pearson coefficient of development data using dif-

ferent algorithms with different hyperparameter, as well as top

rank results on STS 2015 test data.

Table 2 shows the best result of each algorith-
m , as well as the top runs on STS 2015 test da-
ta. GB(n=140) outperformed other algorithms on all
datasets. We choose GB(n=140) as our final regres-
sion algorithm on our next series experiments. Al-

so, without any specific training dataset selections or
choosing suitable features, we achieve the consider-
able results compare to the top runs on STS 2015
Task. Sultan et al. (2015) has shown that specific
training datasets with similar domains and enough
data will yield better results than an all-inclusive
training datasets. And next we endeavor to select
specific training sets and suitable features.

3.4 System Setups

We build three different systems according to the us-
age of training datasets as follows.

U-SEVEN: This is an unsupervised system based
on the word aligner described in (Sultan et al., 2015)
without any training data. We evaluate seman-
tic similarity by adopting straight-forward measure-
ments (i.e., longest common sequence, alignment
feature, corpus-based feature, all four features from
word embedding features), which are averaged to
get the final score. We adopt cosine distance, Pear-
son coefficient, Spearman coefficient as the distance
measurements, which perform better results on our
preliminary experiments.

S1-All: We use all the training datasets and build
a single global regression model regardless of do-
main information of different test datasets. In order
to make better use of these features and improve the
performance, we construct feature selection proce-
dure on development set (i.e., test set of STS 2015
Task) and vote for the preserved feature sets. As
for feature selection strategy, we adopt hill climb-
ing: keep adding one type feature at a time until no
further improvement can be achieved.

S2: Sultan et al. (2015) has shown that taking all
the training datasets into consideration may hurt the
performance since training and test sets are from d-
ifferent domains. Hence, for each test set, we select
the datasets which are most similar, taking source,
average length of sentences and word mover’s dis-
tance (discussed in Section 2.3) into consideration.
For the data set with symbol * (i.e., headlines),
we use all headlines pairs. For answers-answers
and question-question, we use belief, deft-forums,
answers-students, answers-forums pairs. For poste-
diting, we use SMTeuropar and MSRpar pairs. For
plagiarism, we use onWN and FNWN pairs.
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4 Results on Training Data

According to the above preliminary experimental re-
sults, we employ GB(n=140) algorithm as our final
regression algorithm. In order to explore the influ-
ences of word embedding features and make better
use of all the above features, we construct feature s-
election experiment on development set (i.e., test set
of STS 2015 Task) and vote for the preserved feature
sets.

Feature belief answers headlines image answers
-students -forums

String-based

len - -
√ √

-
pos - -

√
-

√
lcs - -

√ √ √
n-grams -

√ √ √ √
ner -

√ √
- -

Machine
Translation

average
√

-
√ √

-
concat - - - - -

Corpus-based wordnet
√ √ √

-
√

lsa -
√ √ √ √

Alignment global -
√ √ √ √

pos-specific
√ √ √ √ √

Word Embedding
(Macro)

word2vec
√ √ √ √ √

glove - - - - -
turian’s

√ √ √ √
-

Word Embedding
(Micro) wmd

√ √ √ √ √

Our Results 0.7835 0.7713 0.8455 0.8808 0.7636
Best Scores 0.7717 0.7879 0.8417 0.8713 0.7390

Table 3: Results of feature selection experiments on STS 2015

test data. The last row shows the the best scores of all submitted

system on STS 2015 task.

Table 3 shows the results of feature selection ex-
periments on STS 2015 test data. From the table, we
find that 1) Word embedding features, the positive
complementary of macro perspective and micro per-
spective, indeed improve results. 2) Specific align-
ment features can compensate for the weaknesses of
global alignment features. 3) Since concatenate MT
metrics and glove features does not perform well on
all five data sets, we remove them from our feature
sets and train our S1-All model with the preserved
features.

5 Results on Test Data

Table 4 summarizes the results of our submitted run-
s on test datasets officially released by the organiz-
ers, as well as the top runs. In terms of weighted
mean of Pearson measurement, system S1-All per-
forms the best while our corpus-specific system S2
performs the worst. We think the measurement to
choose training data from the candidate datesets in
main task are ill-suited. It is noteworthy that on pla-
giarism and postediting, our unsupervised model U-

SEVEN achieves much better results than the super-
vised model (i.e., S1-All, S2), which indicates the
efficiency of the ensemble of similar measurements.

Dataset Runs Best
U-SEVEN S1-All S2 Score

answers-answers 0.4774 0.5697 0.5715 0.6923
plagiarism 0.8301 0.8250 0.7733 0.8413
headlines 0.7668 0.8121 0.7903 0.8274

postediting 0.8423 0.8234 0.7496 0.8669
question-question 0.7191 0.7311 0.6763 0.7470

weighted mean 0.7242 0.7507 0.7116 0.7780

Table 4: The results of our three runs on STS 2016 test dataset-

s.The rightmost column shows the best score by any system.

The last row shows the value of the officially evaluation metric.

On answer-answer set, the gap between top sys-
tems and our systems is about 12%. According to
our investigations on this set, we find that certain
sentence pairs are similar in syntactical structure but
express different meanings. For example,
{

You should do it.
You can do it, too.

{
It’s pretty much up to you.
It’s much better to ask.

Our assumption (i.e., two sentences with similar
syntax structure convey similar meaning) does not
apply to the above condition.

6 Conclusion

We use the traditional NLP features including string-
based features, corpus-based features and alignmen-
t features for textual similarity estimation, as well
as efficient word embedding features. It is also
worth pointing out that our word embedding fea-
tures are highly interpretable and hyper-parameter
free, as well as they are straight-forward to measure
semantic textual similarity. The difference between
top system and our best system is about 2.8%, which
means our systems are promising. Noticing the gap
between top system and our systems on answer-
answer set, we will explore to find the central words
of sentences in future work.
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