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Abstract

We report the findings of the Complex Word
Identification task of SemEval 2016. To cre-
ate a dataset, we conduct a user study with
400 non-native English speakers, and find that
complex words tend to be rarer, less ambigu-
ous and shorter. A total of 42 systems were
submitted from 21 distinct teams, and nine
baselines were provided. The results high-
light the effectiveness of Decision Trees and
Ensemble methods for the task, but ultimately
reveal that word frequencies remain the most
reliable predictor of word complexity.

1 Introduction

Complex Word Identification (CWI) is the task of
deciding which words should be simplified in a
given text. It is commonly connected with the task
of Lexical Simplification (LS), which has as goal to
replace complex words and expressions with sim-
pler alternatives. In the usual LS pipeline, which
was first introduced by (Shardlow, 2014), CWI is
the first step. An effective CWI strategy can pre-
vent LS approaches from replacing simple words,
and hence prevent them from making grammatical
and/or semantic errors. Early LS approaches (De-
vlin and Tait, 1998; Carroll et al., 1999) do not in-
clude CWI. As shown in (Paetzold and Specia, 2013;
Shardlow, 2014), ignoring this step can considerably
decrease the quality of the output produced by a sim-
plifier.

CWI has been gaining popularity in recent re-
search. The LS approach in (Horn et al., 2014)
employs an implicit CWI strategy in which a target
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word is only deemed complex if the LS model can
find a candidate substitution which is simpler. Their
results, however, show that the approach is unable
to find simplifications for one third of the complex
words in the dataset. (Shardlow, 2013b) presents
the CW corpus: the first dataset for CWI. Although
a relevant contribution, this dataset contains only
731 instances extracted automatically from the Sim-
ple English Wikipedia edits, which raises concerns
about its reliability and applicability.

The results obtained by Shardlow (2013a) high-
light some of the issues of the dataset. They use the
CW corpus to compare the performance of three so-
lutions to CWI: a Threshold-Based approach, a Sup-
port Vector Machine (SVM), and a “Simplify Ev-
erything” approach. In their experiments, the “Sim-
plify Everything” approach achieves higher Accu-
racy, Recall and F-scores than all other systems, sug-
gesting that simplifying all words in a sentence is
the most effective approach for CWI. These results
are clearly counter intuitive and conflicting with the
conclusions drawn in (Paetzold and Specia, 2013;
Paetzold, 2013; Shardlow, 2014).

In this paper we describe the first edition of the
Complex Word Identification task, organized at Se-
mEval 2016. This is an initiative that aims to pro-
vide reliable resources and new insights for CWI, as
well as to establish the state of the art performance
in CWI for English texts, and bring more visibility
to the area of Text Simplification.

2 Task Description

The Complex Word Identification task of SemEval
2016 invited participants to create systems that,
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given a sentence and a target word within it, can
predict whether or not a non-native English speaker
would be able to understand the meaning of the tar-
get word. We chose non-native speakers as a target
audience because, unlike second language learners
and those with low literacy levels or conditions such
as Aphasia and Dyslexia, non-native speakers of En-
glish have not yet been explicitly assessed with re-
spect to their simplification needs. In addition, the
broad availability of such an audience makes data
collection more feasible.
We have established main goals for the task:

1. To learn which words challenge non-native En-
glish speakers and to understand what their
traits are.

2. To investigate how well one’s individual vo-
cabulary limitations can be predicted from the
overall vocabulary limitations of others in the
same category.

3. To introduce a new corpus to be used in Text
Simplification and other tasks related to Topic
Modelling and Semantics.

4. To evaluate the reliability of various resources
commonly used in the creation of Lexical Sim-
plification approaches.

5. To establish the state of the art performance in
CWI for English texts.

6. To investigate and establish evaluation metrics
for the task of CWIL.

In order to achieve these objectives for the shared
task, we started by creating a manually annotated
dataset through a user study.

3 User Study

In the study, volunteers were asked to judge whether
or not they could understand the meaning of each
word in a given sentence. In the following we pro-
vide more details on the sentences used and the an-
notation process.

3.1 Data Sources

We selected 9,200 sentences to be annotated, after
filtering out cases with spurious characters, HTML
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or CSS markup, or outside the 20-40 word-length

range. These sentences were taken from three
sources:
CW Corpus (Shardlow, 2013b): composed of

731 sentences from the Simple English Wikipedia
in which exactly one word had been simplified
by Wikipedia editors from the standard English
Wikipedia. Commonly used for the training and
evaluation of Complex Word Identification systems.
231 sentences that conformed to our criteria were
extracted.

LexMTurk Corpus (Horn et al., 2014): com-
posed of 500 sentences from the Simple English
Wikipedia containing one target word that had been
simplified from the standard English Wikipedia.
Commonly used for the training and evaluation of
Lexical Simplification systems. 269 sentences that
conformed to our criteria were extracted.

Simple Wikipedia (Kauchak, 2013): composed
of 167,689 sentences from the Simple English
Wikipedia, each aligned to an equivalent sentence
in the standard English Wikipedia. We selected a set
of 8,700 sentences from the Simple Wikipedia ver-
sion that conformed to our criteria and were aligned
to an identical sentence in Wikipedia. The goal was
to evaluate the ability of the Wikipedia (human) ed-
itors in identifying complex words for readers of the
Simple Wikipedia.

3.2 Annotation Process

400 non-native speakers of English participated in
the experiment, mostly university students or staff.
Volunteers provided anonymous information about
their native language, age, education level and En-
glish proficiency level according to CEFR (Com-
mon European Framework of Reference for Lan-
guages). They were asked to judge whether or not
they could understand the meaning of each con-
tent word (nouns, verbs, adjectives and adverbs, as
tagged by Freeling (Padr and Stanilovsky, 2012)) in
a set of sentences, each of which was judged inde-
pendently. Volunteers were instructed to annotate all
words that they could not understand individually,
even if they could comprehend the meaning of the
sentence as a whole.



A subset of 200 sentences was split into 20 sub-
sets of 10 sentences, and each subset was annotated
by a total of 20 volunteers. The remaining 9,000 sen-
tences were split into 300 subsets of 30 sentences,
each of which was annotated by a single volunteer.

4 Analysis

A total of 35,958 distinct words were annotated
(232,481 in total). Out of these, 3,854 distinct words
(6,388 in total) were deemed as complex by at least
one annotator. In the following sections, we discuss
details of the data collected.

4.1 Profile of Annotators

Annotators are speakers of 45 languages. The most
predominant languages were Portuguese (15.3%),
Chinese (13%) and Spanish (11.3%). Annotators are
between 18 and 66 years old (average 28.2). 63.7%
of the volunteers were Postgraduate students, 32.3%
Undergraduate, and 4% were in High School. 36.8%
claimed to have Advanced (C2) English proficiency
skills, 37.7% Pre-Advanced (C1), 16.6% Upper-
Intermediate (B2), 6.4% Intermediate (B1), 2% Pre-
Intermediate (A2) and 0.5% Elementary (Al).

By inspecting the data, we found interesting cor-
relations between the number of complex words an-
notated and volunteers’ age or English proficiency
level. Figures 1 and 2 illustrate average and stan-
dard deviation values using 10-year age bands and
proficiency levels, respectively.
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Figure 1: Age bands over number of complex words

Both graphs show that, although the average num-
ber of complex words drops as age and proficiency
level increase, the variance within each group is very
high, suggesting that such groups may not be signif-
icantly distinct from each other. By performing F-
tests with p=0.05, we found a significant difference
between the band of 40+ years of age and the bands
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Figure 2: Proficiency levels over number of complex words

of 10+, 20+ and 30+ years of age, which suggests
that one’s English knowledge peaks at such age. We
also found significant differences between almost all
English proficiency levels above A2, except between
B2 and C1. We did not find significant differences
among education levels.

4.2 Analysis of Data Sources

Evaluating the data, we found that the words deemed
complex by Wikipedia editors were marked as com-
plex by our annotators in only 0.8% of the CW in-
stances, and 19.7% of the LexMTurk instances. In
contrast, 51.9% of the edited words in the CW cor-
pus and 40.8% of those in the LexMTurk corpus
were deemed complex by at least one of our anno-
tators. As for the remaining Simple Wikipedia in-
stances, we found that at least one word in 27.3%
of the instances was deemed complex by an anno-
tator, which shows that the simplified version of
Wikipedia may still be challenging to non-native
speakers.

We also inspected these and other datasets for the
purposes of LS. In addition to the aforementioned
CW and LeXMturk corpora, we took the dataset
used in the English Lexical Simplification task of
SemEval 2012, composed of 2,010 instances total,
and LSeval, the LS evaluation dataset introduced by
(De Belder and Moens, 2012), composed by 430 in-
stances. Each instance in all these datasets contains
a sentence and a target complex word. Table 1 shows
the number of target words included in each dataset,
how many of them appear in at least one of our 9,200
sentences, and the proportion of the latter that was
deemed complex by at least one of our annotators.

The figures suggest that the aforementioned re-
sources may not be ideal for the training or evalu-
ation of CWI or LS approaches targeting non-native
speakers, since they do not necessarily capture their



‘Total Appear in 9,200 Complex

CW 272 260 34.6%
LexMTurk | 454 420 33.3%
SemEval 410 342 26.0%
LSeval 80 59 20.3%

Table 1: Results of dataset analysis

needs with respect to simplification.

4.3 Features of Complex Words

We collected statistics that highlight the differences
between simple words and those deemed complex
by at least one annotator. We consider words’ log-
probability in a trigram language model built from
the Simple Wikipedia corpus (Kauchak, 2013), their
length, number of syllables, and number of senses,
synonyms, hypernyms and hyponyms registered in
Wordnet (Fellbaum, 1998). Table 2 shows average
values for these features. According to F-tests with
p = 0.01, for all features considered, complex and
simple words are significantly different. On aver-
age, complex words are less ambiguous, shorter, and
occur less in Simple Wikipedia.

Feature Complex Simple
Length 7.490 £ 2.683 7.966 £ 2.724
Syllables 2.313 £ 1.101 2.557 £1.163
-Probability | 5.974 £ 5.956 5.599 £+ 3.784
Senses 4.169 = 5.945 4.739 £ 5.649
Synonyms 10.501 £ 15.663 | 11.893 + 14.889
Hypernyms 3.141 £4.732 3.586 £ 4.612
Hyponyms | 10.389 £ 28.687 | 12.253 & 30.989

Table 2: Mean and standard deviation for word features

We also noticed that the words most frequently
deemed complex by annotators were nouns of tech-
nical nature, such as “undercroft”, “malleus” and
“chalybeatus”.

4.4 Agreement Analysis

We calculated the Krippendorft’s Alpha agreement
coefficient (Hayes and Krippendorff, 2007) for each
set of 10 sentences that were annotated by 20 volun-
teers. The Cohen’s Kappa coefficient (Cohen, 1968)
was not used due to the large disparity between the
number of complex and simple words, which causes
the likelihood of annotators agreeing by chance to
be higher than the relative observed agreement. The
sets have an average agreement coefficient of 0.244,
and a standard deviation of 0.1. The relatively low
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agreement value highlights the expected heterogene-
ity among non-native speakers with different lan-
guage backgrounds and proficiency levels.

5 Datasets

We have created two training datasets for the task:
joint and decomposed. Both contain all instances
which were annotated by 20 non-native speakers.
The joint dataset contains a single label for each
instance, which is 1 if at least one of the 20 anno-
tators has deemed it complex, and O otherwise. Dif-
ferently, the decomposed dataset contains one label
for each of the 20 annotators, which is 1 if they have
judged it to be complex, and O otherwise. Along
with the labels, the dataset instances also include
the sentence, target word and its position. Partic-
ipants were allowed to use any additional external
resources to build their models. A participant could,
for an example, use other (not necessarily publicly
available) datasets to complement the one provided.

The test set is composed by all the instances
annotated by only one non-native speaker. While
the training sets contain the data pertaining to the
same 2,237 instances, the test set contains 88,221
instances. Using this setup, we are able to replicate
a realistic scenario in Text Simplification, where the
needs of many readers must be predicted based on
the needs of a sample of the reader population.

Table 3 shows some examples of instances from
our joint training set.

6 Systems

Each team was allowed to submit at most two sys-
tems. In total, 42 systems were submitted by 21
teams:

AI-KU Introduces two SVM classifiers trained
with a Radial Basis Function over the joint dataset.
While one of their systems use as features the word
embeddings of the target word itself and its sub-
strings (native), the other uses the embeddings of the
surrounding words as well (nativel).

AKTSKI Presents two SVM classifiers: one that
weighs labels according to the annotators’ judge-
ments (wsys), and another that does not (svmbasic).
Their systems use various semantic and morpholog-
ical features, and were trained over the joint dataset.



Sentence Word | Position | Label
Leo, on December 23, took an oath of purgation concerning the charges
. . . . took 6 0
brought against him, and his opponents were exiled.
Leo, on December 23, took an oath of purgation concerning the charges
. . . . oath 8 1
brought against him, and his opponents were exiled.
It resembles five deep spoons with the handles linked, or, alternately, the ham-
deep 3 0
mocks resemble five fig halves.
It resembles five deep spoons with the handles linked, or, alternately, the ham-
halves 19 1
mocks resemble five fig halves.
If the growth rate is known, the maximum lichen size will give a minimum age
. . growth 2 0
for when this rock was deposited.
If the growth rate is known, the maximum lichen size will give a minimum age .
. . lichen 9 1
for when this rock was deposited.

Table 3: Dataset instances

Amrita-CEN Introduces two SVM classifiers
trained over the joint dataset. While one of them
uses word embeddings as well as various semantic
and morphological features (w2vecSim), the other
also includes POS tag information (w2vecSimPos).

BHASHA Presents two systems: an SVM (SVM)
classifier and a Decision Tree (DECISIONTREE)
classifier. The instances in the dataset are first pre-
processed, then classified according to various lexi-
cal and morphological features. Finally, the results
are post-processed with hand-crafted rules. Both
systems are trained over the joint dataset.

ClacEDLK Uses Random Forests to train two
classifiers over the joint dataset with semantic, mor-
phological, lexical and psycholinguistic features.
While one classifier uses a class-assignment thresh-
old of 0.5 (RandomForest-0.5), the other uses a
threshold of 0.6 (RandomForest-0.6).

Coastal CPH Introduces a Neural Networks and
a Logistic Regression solution. Their Neural Net-
works system (NeuralNet) is trained over the joint
dataset, and uses two hidden layers leading to a sin-
gle activation node. Their Logistic Regression sys-
tem (Concatenation) is trained over the decomposed
dataset. Both systems use the same set of features,
which include word frequency measures and word
embedding values.

GARUDA Presents two solutions: a hybrid model
(HSVM&DT) and an SVM classifier ensemble
(SVMPP). HSVM&DT obtains predictions from
various SVM models, which are then validated by
Decision Tree classifiers trained specifically to judge
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whether the predictions are correct. The validated
predictions are then combined into a final label.
SVMPP trains a single SVM classifier for each of
the 20 annotators of the decomposed dataset, then
uses a weighted average to combine their predic-
tions.

HMC Performs CWI through a Decision and a
Regression Tree, both with a maximum depth of
four. During training, their systems deem complex
those words which were judged so by at least 25%
(DecisionTree25) and 5% (RegressionTree05) of the
first 19 annotators in the decomposed dataset. Their
systems are then tuned based on the judgment of the
20th annotator.

IIIT Resorts to Nearest Centroid Classification to
perform CWI. While one of their classifiers uses the
Manhattan distance during training (NCC), the other
uses the Euclidean distance (NCC2). As features,
they use semantic and morphological features. Their
systems are trained over the joint dataset.

JUNLP Presents a Random Forest (RandomFor-
est) and a Naive Bayes (NaiveBayes) classifier
trained over the joint dataset. Among the semantic,
Lexicon-Based and morphological features used are
the words’ POS tag and Named Entity information.

LTG Uses a very simple setup of Decision Trees
trained over the decomposed dataset. Both of their
systems learn a Threshold Based on the number
of complex judgments in the decomposed dataset.
While one of them learns only one threshold (Sys-
tem1), the other combines various (System2).



MACSAAR Introduces a Random Forest (RFC)
and an SVM (NNC) classifier. They use Zipfian
features, such as the percentile ranking of the tar-
get word, and character n-gram features, such as the
probability sum of all character n-grams in the sen-
tence. For training, they use the joint dataset.

MAZA Employs ensemble methods over the joint
dataset. They train a context-independent system
(A) that uses various word frequency features, and
a context-aware system (B) that also includes fre-
quency of the previous and following words.

Melbourne Uses weighted Random Forest clas-
sifiers along with various lexical and semantic fea-
tures. While one of their systems attributes weight
1.5 to the complex class (runwl5), the other at-
tributes weight 3 (runw3).

PLUJAGH Presents two Threshold-Based solu-
tions to CWI. Their first system (SEWDF) judges
a word to be complex if its frequency in Simple
Wikipedia is lower than 147. Their other system
learns the frequency threshold from the joint dataset
that maximises the F-Score (SEWDFF).

Pomona Uses Threshold-Based bagged classifiers
with bootstrap re-sampling. The thresholds of their
classifiers are determined through brute-force over
the target words’ frequencies in a given corpus.
They use bag sizes of 10 re-samplings selected
through 10-fold cross validation, repeated 20 times.
The corpora used are Wikipedia (NormalBag) and
the Google Web Corpus (GoogleBag). Their sys-
tems are trained over the joint dataset.

Sensible Provides a solution that combines Recur-
rent Neural Networks and Ensemble Methods. Their
Neural Networks are composed of Long Short-
Term Memory layers leading to a single activation
node. They predict that a word is only complex
if the activation node outputs a value equal or big-
ger than 0.5. The architecture of their networks is
determined through cross-validation over the joint
dataset. While one of their systems consist of the
best performing Neural Network architecture found
(Baseline), the other combines the five best architec-
tures using an eXtreme gradient boosted ensemble
(Combined).

565

SV000gg Employs two System Voting techniques
that combine various Lexicon-Based, Threshold-
Based and Machine Learning voter sub-systems into
one. Their first system (Hard) uses Hard Vot-
ing: it increases the prediction likelihood of a la-
bel by one for each voter that has predicted it for
a given instance. Their second system (Soft) uses
Performance-Oriented Soft Voting: instead of in-
creasing it by one, they increase it by the systems’
G-Score over a held-out portion of the joint dataset.
Their voters use a total of 69 morphological, lexical,
collocational and semantic features.

TALN Uses Random Forests to perform CWI.
While one of their systems is trained over the joint
dataset (RandomForest_SIM), the other is trained
over the decomposed dataset (RandomForest_ WEI),
and includes the number of annotators that deemed
the word to be complex as a feature. Both systems
also include various lexical, morphological, seman-
tic and syntactic features.

USAAR Presents two Bayesian Ridge classifiers.
Their first system (Entropy) is trained based solely
on a hand-crafted Word Sense Entropy metric,
which is calculated for each target word in the joint
dataset. Their other system (Entroplexity) combines
Word Sense Entropy with perplexity measures cal-
culated with a language model.

UWB Performs CWI with the help of Maxi-
mum Entropy classifiers. Both classifiers use only
one feature: document frequencies of words in
Wikipedia. While one of them is trained over the
joint dataset (All), the other is trained over the de-
composed dataset (Agg).

7 Baselines

Along with the submitted systems, we include
eleven baselines:

e All Complex: Predicts that all words are com-
plex.

o All Simple: Predicts that all words are simple.

e (TB) Simple Wiki: Threshold-Based approach
that exploits the word’s language model proba-
bilities from the Simple Wikipedia.



e (TB) Wikipedia: Threshold-Based approach
that exploits the word’s language model proba-
bilities from Wikipedia.

e (TB) Length: Threshold-Based approach that
exploits the word’s length.

e (TB) Senses: Threshold-Based approach that
exploits the word’s number of senses.

e (LB) Ogden: Lexicon-Based approach that
classifies as simple words which are in the Og-
den’s vocabulary’.

e (LB) Simple Wiki: Lexicon-Based approach
that classifies as simple words which are in the
Simple Wikipedia.

e (LB) Wikipedia: Lexicon-Based approach
that classifies as simple words which are in
Wikipedia.

We train 3-gram language models with SRILM
(Stolcke, 2002).  The Wikipedia and Simple
Wikipedia corpora are the ones made available by
(Kauchak, 2013). Sense counts were extracted from
WordNet (Fellbaum, 1998).

For completion, we also assess the performance
of two ensemble methods:

e (HV) All Systems: Ensemble approach that
combines all systems submitted, including the
aforementioned baselines, through Hard Vot-
ing, in which the final label of each instance is
the one that was most frequently predicted by
the systems.

e (HV) No Baselines: Identical to the previous
baseline, except it does not include our base-
lines.

8 Evaluation

To assess the systems’ performance, we choose to
complement the typical F-score, which is the har-
monic mean between Precision and Recall. Even
though F-score is arguably the most frequently used
evaluation metric to compare the performance of
classifiers, we feel that, as far as the relationship
between Complex Word Identification and Lexical

"http://ogden.basic-english.org/words.html
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Simplification are concerned, it does not accurately
capture the effectiveness of a solution for the task.

To motivate our decision, we must first outline the
characteristics of a great lexical simplifier. In order
to be both effective and reliable, it must accomplish
two things simultaneously:

1. Not to make any replacements that compromise
the sentences’ grammaticality and/or meaning.

2. To make a text as simple as possible.

In order to help a simplifier achieve these goals, a
complex word identifier must consequently:

1. Avoid labeling complex words as simple, and
hence impede them from being simplified.

2. Avoid labeling simple words as complex, and
hence allow for unnecessary, possibly erro-
neous simplifications.

3. To capture as many complex words as possible,
and hence maximise the simplicity of a sen-
tence.

Now that we have outlined what the ideal identi-
fier must do, we can translate these objectives into
typical evaluation expressions used in the context of
classification problems. In this context, “positive”
and “negative” decisions refer to labeling words as
complex and simple, respectively.

While objectives number one and two state that
the identifier must minimise the number of false neg-
atives and false positives, item three states that it
must maximise the number of true positives. One
way to measure the proficiency of a classifier in
achieving these goals is through Accuracy and Re-
call, respectively. In order to balance these two met-
rics, we have conceived the G-score, which mea-
sures the harmonic mean between Accuracy and Re-
call. For completion, we also report the systems’
ranking according to F-score.

9 Results

The official G and F-score ranks obtained by each
system are reported in the first two columns of Ta-
ble 4 (G and F). The systems that have achieved
the highest G-scores are the ones submitted by the



G | F | Team System Accuracy Precision Recall F-score G-score
1 | 13 | SV000gg Soft 0.779 0.147 0.769  0.246 0.774
2 | 16 | SV000gg Hard 0.761 0.138 0.787  0.235 0.773
3 9 | TALN RandomForest_ WEI 0.812 0.164 0.736  0.268 0.772
4 | 10 | UWB All 0.803 0.157 0.734  0.258 0.767
4 | 11 | PLUJAGH SEWDF 0.795 0.152 0.741 0.252 0.767
4 | 15 | JUNLP NaiveBayes 0.767 0.139 0.767  0.236 0.767
5 | 7 | HMC RegressionTree05 0.838 0.182 0.705  0.290 0.766
6 5 | HMC DecisionTree25 0.846 0.189 0.698  0.298 0.765
7 | 12 | JUNLP RandomForest 0.795 0.151 0.730  0.250 0.761
8 8 | MACSAAR | RFC 0.825 0.168 0.694  0.270 0.754
9 6 | TALN RandomForest_SIM 0.847 0.186 0.673 0.292 0.750
10 | 14 | MACSAAR | NNC 0.804 0.146 0.660  0.240 0.725
11 | 21 | Pomona NormalBag 0.604 0.095 0.872  0.171 0.714
12 | 22 | Melbourne runwl5 0.586 0.091 0.870 0.165 0.701
13 | 23 | UWB Agg 0.569 0.089 0.885 0.161 0.693
14 | 24 | Pomona GoogleBag 0.568 0.088 0.881  0.160 0.691
15 | 25 | IIT NCC 0.546 0.084 0.880  0.154 0.674
16 | 2 | LTG System?2 0.889 0.220 0.541 0.312 0.672
16 | 25 | Baseline (TB) Wikipedia 0.536 0.084 0.901 0.154 0.672
17 | 18 | MAZA A 0.773 0.115 0.578  0.192 0.661
18 | 28 | Baseline (TB) Simple Wiki 0.513 0.081 0.902 0.148 0.654
19 | 29 | Melbourne runw3 0.513 0.080 0.895 0.147 0.652
20 | 31 | Sensible Baseline 0.591 0.078 0.713 0.140 0.646
21 | 30 | ClacEDLK | ClacEDLK-RF_0.6 0.688 0.081 0.548  0.141 0.610
22 | 1 | PLUJAGH SEWDFF 0.922 0.289 0.453  0.353 0.608
23 | 32 | IT NCC2 0.465 0.071 0.860  0.131 0.604
24 | 26 | ClacEDLK | ClacEDLK-RF_0.5 0.751 0.090 0.475 0.152 0.582
25 | 33 | Baseline (TB) Senses 0.436 0.068 0.861 0.125 0.579
26 | 4 | MAZA B 0.912 0.243 0.420  0.308 0.575
27 | 35 | AmritaCEN | w2vecSim 0.627 0.061 0.486  0.109 0.547
28 | 24 | GARUDA SVMPP 0.796 0.099 0.415 0.160 0.546
29 | 39 | AIKU nativel 0.583 0.057 0.512 0.103 0.545
29 | 40 | AIKU native 0.555 0.056 0.535 0.101 0.545
30 | 41 | AKTSKI WSys 0.587 0.056 0.490  0.100 0.534
30 | 42 | AKTSKI svmbasic 0.512 0.053 0.558  0.097 0.534
31 | 19 | BHASHA DECISIONTREE 0.836 0.118 0.387  0.181 0.529
32 | 17 | USAAR entropy 0.869 0.148 0.376  0.212 0.525
33 | 34 | Sensible Combined 0.737 0.072 0.390  0.122 0.510
34 | 20 | BHASHA SVM 0.844 0.119 0.363  0.179 0.508
35 | 36 | CoastalCPH | NeuralNet 0.693 0.063 0.398  0.108 0.506
36 | 37 | Baseline (TB) Length 0.332 0.057 0.852 0.107 0.478
36 | 3 | LTG System1 0.933 0.300 0.321 0.310 0.478
37 | 29 | USAAR entroplexity 0.834 0.097 0.305 0.147 0.447
38 | 41 | AmritaCEN | w2vecSimPos 0.743 0.060 0.306  0.100 0.434
39 | 38 | Baseline (LB) Ogdens 0.248 0.056 0.947 0.105 0.393
40 | 27 | GARUDA HSVM&DT 0.880 0.112 0.226  0.149 0.360
41 | 35 | CoastalCPH | Concatenation 0.869 0.080 0.171 0.109 0.285
42 | 43 | Baseline (LB) Wikipedia 0.047 0.047 1.000 0.089 0.090
43 | 43 | Baseline All Complex 0.047 0.047 1.000  0.089 0.089
44 | 44 | Baseline (LB) Simple Wiki 0.953 0.241 0.002 0.003 0.003
45 | 45 | Baseline All Simple 0.953 0.000 0.000  0.000 0.000
- - | Baseline (HV) All Systems 0.791 0.151 0.748 0.251 0.769
- - | Baseline (HV) No Baselines 0.880 0.204 0.539 0.296 0.668

Table 4: Final system ranks and scores. Baselines are in boldface.
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SV000gg team, which combine various Threshold-
Based, Lexicon-Based and Machine Learning ap-
proaches with minimalistic voting techniques. Simi-
larly, the system from the TALN team, which has the
third highest G-score, uses an ensemble method that
combines various Decision Tree classifiers. Interest-
ingly, the (HV) All Systems and (HV) No Baselines
systems, which combine the submitted systems us-
ing the same Hard Voting strategy employed by the
runner up SV000gg-Hard, did not manage to outper-
form it.

One of the most clearly highlighted phenomena
in our results is the recurring effectiveness of Deci-
sion Trees and Random Forests in CWI: out of the
systems with the 10 best G-scores, only three do not
employ them. Their reliability is also highlighted
by the variety of distinct feature sets used to train
them, which range from morphological to syntactic.
In contrast, the scores obtained by the BHASHA-
DECISIONTREE and GARUDA-HSVM&DT sys-
tems reveal that these techniques can be much less
effective when incorporated in more elaborate se-
tups.

When it comes to F-score, Decision Trees and
Random Forests remain dominant among the top 10
systems, but ultimately lose to a much more mini-
malistic Threshold-Based strategy. The PLUJAGH-
SEWDFF system, which obtained the highest F-
score, simply learns the threshold of word frequen-
cies in Wikipedia that maximises the F-score over
the joint dataset. Similarly, the LTG systems, which
achieved the second and third highest F-scores, use
Decision Trees to learn a threshold over the number
of annotators that judged a word to be complex.

Another interesting finding refers to the difference
between raw word frequencies and single-word lan-
guage model probabilities. The systems submitted
by the PLUJAGH team, which learn thresholds over
raw word frequencies from Simple Wikipedia, have
consistently outperformed the “(TB) Simple Wiki”
baseline, which uses language model probabilities,
in both G and F-scores.

Perhaps the biggest surprise from our results
comes from to the overall performance of systems
which employ Neural Networks and/or word embed-
ding models: systems that do so — the ones submit-
ted by AI-KU, AmritaCEN, CoastalCPH and Sen-
sible — ranked no better than 20th in G-score and
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31th in F-score. This comes as a surprise, given that
these techniques have been employed in state of the
art solutions to a range of tasks in recent years. We
hypothesize that the small amount of training data
available is the main cause for their unsatisfactory
performance.

10 Conclusions

In this paper we have described the findings of the
Complex Word Identification task of SemEval 2016.
The task was framed as a simple, accessible and yet
interesting challenge, such that researchers with any
background can participate. It attracted a very large
number of participants, particularly given that this
was its first edition.

To create the task’s dataset, we conducted a user
study with 400 non-native English speakers, which
resulted in a total of 158,624 individual annotations.
By analyzing the data obtained we were able to con-
firm that, according to non-native speakers of En-
glish, there is a statistically significant difference be-
tween complex and simple words. We have also
found a noticeable correlation between the num-
ber of complex words annotated and English pro-
ficiency level, which is positive evidence that our
CWI datasets do, at least to some extent, capture
the CWI needs of non-natives. In contrast, we have
found that other available resources, such as the CW,
LexMTurk and LSeval datasets, may not necessarily
do so.

A total of 42 systems were submitted to the task.
They reach upwards of impressive 77% in G-score,
suggesting that predicting one’s individual simplifi-
cation needs based on the profile of a more diverse
audience is feasible. The strategies used range from
very simple Threshold-Based approaches to elabo-
rate Ensemble methods that combine various Deep
Recurrent Neural Networks and word embeddings.
We have ranked systems according to two metrics:
F-score and G-score. We found that, likely due to the
nature of the task and the reduced number of training
instances available, Decision Trees and Ensemble
methods perform better than Neural Networks and
word embedding models. Additionally, it remains
very clear that the most effective way to determine a
word’s complexity is by searching for its frequency
in corpora. The quality of the corpora plays an im-



portant role.

In the future, we plan to propose more SemEval
tasks in the Text Simplification domain, so that we
can continue to learn about word complexity, and
hopefully further increase this topic’s reach and pop-
ularity.
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