
Proceedings of SemEval-2016, pages 367–371,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

UFAL at SemEval-2016 Task 5:
Recurrent Neural Networks for Sentence Classification

Aleš Tamchyna and Kateřina Veselovská
Charles University in Prague, Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics
Malostranské náměstı́ 25, Prague, Czech Republic

{tamchyna,veselovska}@ufal.mff.cuni.cz

Abstract

This paper describes our system for aspect-
based sentiment analysis (ABSA). We partic-
ipate in Subtask 1 (sentence-level ABSA), fo-
cusing specifically on aspect category detec-
tion. We train a binary classifier for each
category. This year’s addition of multiple
languages makes language-independent ap-
proaches attractive. We propose to utilize
neural networks which should be capable of
discovering linguistic patterns in the data au-
tomatically, thereby reducing the need for
language-specific tools and feature engineer-
ing.

1 Introduction

Aspect-based sentiment analysis (ABSA) refers to
the identification of specific entities and their as-
pects (aspect terms, opinion targets) in text and to
the classification of their polarity. Typically, ABSA
is applied to user reviews from various fields, such
as consumer electronics, hotels or restaurants. In
ABSA, we assume that the general target of evalua-
tion has several aspects (e.g. food quality for restau-
rants) and we attempt to identify users’ opinions on
these individual aspects. Unlike the more general
task of sentiment analysis where the goal would be
to classify the polarity of entire sentences (or even
whole reviews), in ABSA, we need to take a more
fine-grained approach and consider also the internal
structure of the given sentences.

As for the sentence-level ABSA, the aim is to
identify all opinion tuples present in the sentence,
taking into account the context of the whole review.

In our work, we focus on identifying aspect term cat-
egories; these are composed of entities (e.g. FOOD)
and their attribute labels (e.g. QUALITY or PRICE).
Both the entities and the attribute labels were as-
signed based on predefined inventories.

We apply our method on several languages cover-
ing the following domains:

• Arabic: hotels

• Dutch: restaurants

• English: consumer electronics and restaurants

• French: restaurants

• Russian: restaurants

• Spanish: restaurants

• Turkish: restaurants

Our submission was the best system for Russian
and Turkish but did not achieve noteworthy results
in other domains/languages.

2 Related Work

The previous results for different ABSA SemEval
tasks are discussed in Pontiki et al. (2014) and Pon-
tiki et al. (2015). So far, most researchers in the
field have focused on traditional machine learning
approaches, such as various probabilistic methods
(see Agarwal and Mittal (2016)), and/or employed
deterministic methods, e.g. subjectivity lexicons
(Taboada et al., 2011). Because more languages
were added this year, approaches such as neural net-
works, which require less language-specific data and
engineering, become attractive.

367



Neural networks have been used for sentiment
analysis. Particularly, in last year’s SemEval Twit-
ter sentiment classification task, several submissions
applied convolutional networks (Toh and Su, 2015;
Ebert et al., 2015). In our work, we use recurrent
networks instead. Our motivation for this decision is
that for aspect identification, syntactic relationships
and long-distance dependencies may play a signif-
icant role and that such phenomena may be better
modeled with a recurrent network. Furthermore,
our recurrent network could easily be adapted to
perform sequence labeling instead of sentence level
classification – this would allow us to identify the
exact position in the sentences where the aspect was
mentioned.

3 System Description

Our system addresses Subtask 1 – sentence-level
ABSA. Within the subtask, we focus on Slot 1, i.e.
aspect category detection. For each sentence, our
goal is to identify all aspect categories which are
mentioned. Each category is composed of an en-
tity E (e.g. FOOD or SERVICE) and its attribute A
(e.g. QUALITY or PRICE). We do not decompose
this definition and treat each category independently,
effectively reducing the task to many binary classifi-
cation subtasks (one for each E#A pair).

Each classifier in our system is a deep recur-
rent neural network with Long Short-Term memory
cells (LSTM, Hochreiter and Schmidhuber (1997)).
LSTMs have been designed to overcome the vanish-
ing gradient problem present in standard recurrent
neural networks. Their ability to remember infor-
mation over many time steps should enable them to
capture long-term dependencies in the data.

Our network encodes the input sentence word by
word and at the end produces a binary classification
decision based on the representation of the full sen-
tence.

3.1 Word Representations

We represent each word (token) on the input by its
pre-trained word embedding (and we do not fur-
ther optimize the embeddings when training the net-
work).

For each language, we use the current dump of

x0 x1 x2 <EOS>

LSTM LSTM LSTM LSTM...

Logistic
Regression

...

Figure 1: Architecture of our network (a single binary classi-

fier).

Wikipedia1 as training data for the word embed-
dings. We use WikiExtractor2 to extract plain text
from the dump. We run a sentence splitter and we
tokenize the sentences. Table 1 shows statistics of
the data for each language.

Language Sentences (M) Tokens (M)
English 97.0 2103
French 26.2 633
Spanish 20.5 505
Russian 18.9 347
Dutch 15.4 252
Turkish 3.9 60
Arabic 3.1 63

Table 1: Sizes of Wikipedia dumps for each language.

We train the representations using word2vec3

with continuous bag of words as the underlying
model. We set the embedding size to 200.

3.2 Network Architecture

Our network is essentially a deep LSTM encoder
followed by a logistic regression layer with two out-
put classes (neurons). For each sentence, we go over
the input word by word and provide the embeddings
of the tokens to the input layer. The hidden LSTM
layers maintain a state at each step which encodes
the (partial) sentence. After the final token, we in-
put an artificial end-of-sentence token which signals
the network to output a classification decision on
the final layer. Depending on the activation of the

1http://wikipedia.org/, we retrieved the current
dumps on January 6, 2016.

2http://medialab.di.unipi.it/wiki/
Wikipedia_Extractor

3https://code.google.com/archive/p/
word2vec/

368



two output neurons, we either classify the instance
as positive (i.e. containing the given E#A pair) or
negative.

Figure 1 shows an illustration of the architecture.
We initially experimented with a single LSTM layer
but stacking several layers lead to improved accu-
racy. All of the networks used in the final submis-
sion share an identical architecture consisting of an
input layer (word2vec embeddings, size 200) fol-
lowed by three LSTM layers (64, 32 and 32 cells)
and the final layer with two neurons. We did not ex-
periment with tuning a decision threshold; we sim-
ply assign the class (positive or negative) which has
the higher probability according to the network. We
implement the networks in Chainer,4 an open-source
framework for neural networks.

3.3 Training

We evaluated several optimization algorithms and
found that Adam (Kingma and Ba, 2014) lead to the
fastest convergence. We also use gradient clipping
as described in Pascanu et al. (2012): when the L2
norm of the gradients increases over a given thresh-
old (which we set to 1), gradients are rescaled to fit
within that norm. We also found dropout (Srivastava
et al., 2014) to improve the results and we utilize it
in all LSTM layers with the probability set to 0.5.

When training, we use cross-validation and mea-
sure held-out accuracy to detect overfitting. We
found that even though training error (almost) mono-
tonically decreases, held-out performance tends to
be rather unstable. Moreover, many classes are rare
and the held-out set may therefore only contain a
handful of positive instances. We were not able to
mitigate this instability which made it difficult to
choose the final model.

Nonetheless, we decide how many training itera-
tions to run based on cross-validation; we measure
the average f-measure over the folds for each itera-
tion and then choose the iteration with the highest
average.

4 Results

In this section, we present and discuss the obtained
results. We compare a number of systems for each
language and domain.

4http://chainer.org/

Official Baseline. We report the results of the of-
ficial baseline (provided by the task organizers). The
official baseline is an SVM classifier with bag-of-
words features which assigns a positive label to a
sentence if the predicted probability is above a cer-
tain threshold.

Baseline. We also implement our own baseline.
We use a simple logistic regression model and, sim-
ilarly to the submitted system, we train a binary clas-
sifier for each category. We only use bag of words
as features; we do not include any other informa-
tion (such as morphological analysis or subjectiv-
ity lexicon features). We use L2 regularization with
weight 1 for all models. Our motivation for includ-
ing this baseline is to provide a direct comparison
with a simpler model trained in a similar way as the
neural network.

Submitted. The system as submitted for the of-
ficial evaluation. Due to the number of networks
that we had to train, we were not able to fully op-
timize all of them before the submission deadline.
In some cases, we therefore use models trained only
on a handful of iterations over the training data.

Optimized. We report the results of the fully op-
timized system separately. These results were ob-
tained after the deadline. In this case, all models
were selected based on cross-validation as described
in Section 3.3.

Best. To put the performance of our system into
context of the state of the art, we also report the
scores of the best system for each language and do-
main.

4.1 Discussion
We evaluate our system using the toolkit provided
by the organizers of the task. Table 2 shows all our
results. The best result for each data set (excluding
the winning system) is marked in bold. Asterisks
mark the cases where our system won.

Concerning baselines, we observe that our imple-
mentation is often substantially better than the offi-
cial baseline. This does not hold for the restaurants
domain in English and Turkish, and for laptops. For
Turkish, we suspect that the size of the test set (144
sentences) plays a role – the scores can be unstable
when test data is small. For laptops, we believe this
can be attributed to the large number of possible cat-
egories in this domain; our classifiers do not use a

369



Domain, Restaurants Hotels Laptops
Language English Spanish French Dutch Russian Turkish Arabic English

Off. Baseline 59.93 54.69 52.61 42.82 55.88 58.90 40.34 37.48
Baseline 58.05 62.17 54.81 54.71 60.75 34.41 49.43 35.08

Submitted 59.30 58.81 49.93 53.88 64.83 61.03 47.30 26.98
Optimized 58.40 58.54 50.84 55.03 60.19 56.54 52.59 38.26

Best 73.03 70.59 61.21 60.15 64.83* 61.03* 52.11 51.94
Table 2: F-measure of the baselines, the submitted system, the fully optimized system and the winning system for all domains and

languages.

tuned threshold.
Our submitted systems do not always outperform

the baselines. While we did win in Russian and
Turkish, results in other data sets are less promis-
ing, with scores similar to the (stronger) baseline
or even lower. This is a discouraging finding, es-
pecially considering the amount of additional data
used in network training – word embeddings were
trained on millions of sentences from Wikipedia.

However, we do observe some generalization in
the outputs of the deep-learning models which is be-
yond the capabilities of the baseline models. For
instance, our model correctly identifies the cate-
gory FOOD#QUALITY in the sentence “Green Tea
creme brulee is a must!”, even though this dish is not
mentioned in the training data.

Our optimized networks do not always perform
better than the submitted systems. Considering that
we trained the submitted networks with fewer itera-
tions (due to time constraints), we suspect that even
with our model selection based on cross validation,
overfitting may still have affected the results.

Overall, there are several possible explanations
for the weak performance. Due to significant do-
main mismatch between Wikipedia and the data sets
for the task, the trained word embeddings may not
be suitable.5

Overfitting, and more generally, suboptimal set-
ting of model (hyper)parameters, also most likely
play a role.

The system design may also be problematic: we
build a relatively large number of completely inde-
pendent models (each doing binary classification for
a single category) even though it seems clear that
some parameter sharing should be possible. This
problem is particularly prominent in data sets with

5We would like to thank the reviewers for this observation.

a large number of possible classes, such as the lap-
top domain. In these cases, many E#A pairs are very
rare. Because we do not decompose the entity and
attribute and we train separate models, our classifiers
only observe a handful of positive training instances,
which results in very unreliable models.

5 Conclusion

We described our submission to the ABSA shared
task. Our system won in two categories but overall
does not outperform a simple baseline solution. We
believe that more careful training of the networks is
required and that we may need to revise the system
design. On the other hand, the deep-learning model
does show some generalization power, so this direc-
tion seems promising.

5.1 Future Work

In the future, we are planning to try other possi-
ble network architectures. In particular, instead of
our many binary classifiers we could train a single
network (for each language/domain) where the fi-
nal layer would have as many neurons as there are
categories. This could simplify the training and per-
haps make the model more robust. Especially for
domains with many possible sentence labels (such
as laptops), this could improve the system perfor-
mance.

A natural extension of this approach would be to
design the network to predict the entity and attribute
separately; this could also allow for some parameter
sharing between different classes.

We would also like to further investigate the issue
of hyperparameter tuning and model selection.

Finally, a direct comparison with convolutional
networks could also be interesting.

370



Acknowledgements

This work was supported by the grant no. GA15-
06894S of the Grant Agency of the Czech Republic.

References

Basant Agarwal and Namita Mittal. 2016. Machine
learning approach for sentiment analysis. In Promi-
nent Feature Extraction for Sentiment Analysis, pages
21–45. Springer.

Sebastian Ebert, Ngoc Thang Vu, and Hinrich Schütze.
2015. Cis-positive: A combination of convolutional
neural networks and support vector machines for sen-
timent analysis in twitter. In Proceedings of the 9th
International Workshop on Semantic Evaluation (Se-
mEval 2015), pages 527–532, Denver, Colorado, June.
Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780, November.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2012. Understanding the exploding gradient problem.
CoRR, abs/1211.5063.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Har-
ris Papageorgiou, Ion Androutsopoulos, and Suresh
Manandhar. 2014. Semeval-2014 task 4: Aspect
based sentiment analysis. In Proceedings of the 8th
international workshop on semantic evaluation (Se-
mEval 2014), pages 27–35.

Maria Pontiki, Dimitrios Galanis, Haris Papageorgiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
Semeval-2015 task 12: Aspect based sentiment anal-
ysis. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), Asso-
ciation for Computational Linguistics, Denver, Col-
orado, pages 486–495.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–
1958, January.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kim-
berly Voll, and Manfred Stede. 2011. Lexicon-based
methods for sentiment analysis. Comput. Linguist.,
37(2):267–307, June.

Zhiqiang Toh and Jian Su. 2015. Nlangp: Supervised
machine learning system for aspect category classifi-
cation and opinion target extraction. In Proceedings

of the 9th International Workshop on Semantic Eval-
uation (SemEval 2015), pages 496–501, Denver, Col-
orado, June. Association for Computational Linguis-
tics.

371


