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Abstract

This paper describes our system submitted to
Aspect Based Sentiment Analysis Task 5 of
SemEval-2016. Our system consists of two
components: binary classifiers trained using
single layer feedforward network for aspect
category classification (Slot 1), and sequential
labeling classifiers for opinion target extrac-
tion (Slot 2). Besides extracting a variety of
lexicon features, syntactic features, and clus-
ter features, we explore the use of deep learn-
ing systems to provide additional neural net-
work features. Our system achieves the best
performances on the English datasets, ranking
1st for four evaluations (Slot 1 for both restau-
rant and laptop domains, Slot 2, and Slot 1 &
2).

1 Introduction

Sentiment analysis and opinion mining have gained
increasing interests in recent years due to the contin-
uous growing of user-generated content on the In-
ternet. Traditionally, the primary focus of the re-
search has been on the detection of the overall senti-
ment of a sentence or paragraph. However, such ap-
proach is unable to handle conflicting sentiment for
different aspects of the same entity. Hence, a more
fine-grained approach, known as Aspect-Based Sen-
timent Analysis (ABSA), is proposed. The goal is
to correctly identify the aspects of entities and the
polarity expressed for each aspect.

The SemEval-2016 Aspect Based Sentiment
Analysis (SE-ABSA16) task is a continuation of
the same task in 2015 (Pontiki et al., 2015). Be-
sides sentence-level ABSA (Subtask 1), it provides

datasets to allow participants to work on text-level
ABSA (Subtask 2). In addition, additional datasets
in languages other than English are available (Pon-
tiki et al., 2016).

We participate in Subtask 1 of SE-ABSA16,
where we submitted results for Slot 1 (aspect cat-
egory classification), Slot 2 (opinion target extrac-
tion), and Slot 1 & 2 (assessing whether a system
correctly identifies both Slot 1 and Slot 2) for the
English datasets.

Our work is based on our previous machine learn-
ing system described in Toh and Su (2015), en-
hanced using additional features learned from neu-
ral networks. For Slot 1, we treat the problem as a
multi-class classification problem where aspect cat-
egories are predicted via a set of binary classifiers.
The one-vs-all strategy is used to train a binary clas-
sifier for each category found in the training data.
Each classifier is trained using a single layer feed-
forward network. We enhance the system by adding
neural network features learned from a Deep Con-
volutional Neural Network system. For Slot 2, we
treat the problem as a sequential labeling task, where
sequential labeling classifiers are trained using Con-
ditional Random Fields (CRF). The output of a Re-
current Neural Network system is used as additional
features. To generate Slot 1 & 2 predictions, the pre-
dictions of Slot 1 and Slot 2 are combined.

The remainder of this paper is organized as fol-
lows. In Section 2, the features used in our system
are described. Section 3 presents the detailed ma-
chine learning approaches. Section 4 and Section 5
show the official evaluation results and feature abla-
tion results respectively. Finally, Section 6 summa-
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rizes our work.

2 Features

Our system used a variety of features which are
briefly described in the following subsections. Most
of the features used are the same as the features used
in Toh and Su (2015).

2.1 Word
Each word in a sentence is used as a feature. Ad-
ditional word context is used for different slots: for
Slot 1, all word bigram context found in a sentence
are also used; for Slot 2, the previous word and next
word context are also used.

2.2 Name List
Two name lists of opinion targets are generated from
the training data of the restaurant domain. One list
contains opinion targets that frequently occur in the
training data. The other list contains words that of-
ten occur as part of an opinion target in the training
data.

2.3 Head Word
For each word, the head word is extracted from the
sentence parse tree and is used as a feature.

2.4 Word Embeddings
Word embeddings have shown previously to be ben-
eficial to opinion target extraction, requiring only
minimal feature engineering effort (Liu et al., 2015).
We trained word embeddings from two unlabeled
datasets: the Multi-Domain Sentiment Dataset con-
taining product reviews from Amazon (Blitzer et
al., 2007)1, and the user reviews found in the Yelp
Phoenix Academic Dataset2. Additional word em-
beddings are also generated from the concatenation
of the above two datasets.

Two different approaches are used to train the
word embeddings. The first approach uses the gen-
sim3 implementation of the word2vec tool (Mikolov
et al., 2013)4. We experiment with different vector
sizes, window sizes, minimum occurrences and sub-
sampling thresholds.

1http://www.cs.jhu.edu/ mdredze/datasets/sentiment/
2http://www.yelp.com/dataset challenge/
3https://radimrehurek.com/gensim/
4https://code.google.com/archive/p/word2vec/

The second approach uses the GloVe tool (Pen-
nington et al., 2014)5. By varying the minimum
count, window size and vector size, different embed-
ding files are generated. The best embedding files to
use are selected using 5-fold cross validation.

2.5 Word Cluster
We further processed the embedding files described
in Section 2.4 by generating K-means clusters from
them. Specifically, the K-means clusters are gener-
ated using the K-means implementation of Apache
Spark MLlib6. Different cluster sizes are tried out
and the best cluster files are selected using 5-fold
cross validation.

2.6 Double Propagation Name List
Besides using the training data to generate name
lists, we used the unsupervised Double Propagation
(DP) algorithm (Qiu et al., 2011) to generate candi-
date opinion targets and collect them into a list. We
adjust the logical rules stated in Liu et al. (2013) to
derive our own propagation rules written in Prolog.
The SWI-Prolog7 is used as the solver. One issue
with our rules is that it can only identify single-word
targets. Thus, we check each identified target and
include any consecutive noun words right before the
target.

3 Approaches

This section describes our approaches used to gen-
erate the predictions for the different slots. The
machine learning system is based on our previous
work (Toh and Su, 2015) and is extended to use ad-
ditional neural network features.

3.1 Aspect Category Classification (Slot 1)
For each category found in the training data, a bi-
nary classifier is trained using the Vowpal Wabbit
tool8, which provides the implementation of the sin-
gle layer feedforward network algorithm that we
use.

Besides using the features reported previously, we
enhance our existing system by using additional fea-
tures from a deep learning system described below.

5http://nlp.stanford.edu/projects/glove/
6http://spark.apache.org/mllib/
7http://www.swi-prolog.org/
8https://github.com/JohnLangford/vowpal wabbit/wiki
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Figure 1: The architecture of our Convolutional Neural Network.

The deep learning system is based on the Deep
Convolutional Neural Network (CNN) architecture
described in Severyn and Moschitti (2015). The ar-
chitecture we use is shown in Figure 1.

A sentence matrix S ∈ R|s|×d is built for each
input sentence s, where each row i is a vector repre-
sentation of the word i in the sentence. The sentence
length |s| is fixed to the maximum sentence length
of the dataset so that all sentence matrices have the
same dimensions. (Shorter sentences are padded
with row vectors of 0s accordingly.) Each row vec-
tor of the sentence matrix is made up of columns
corresponding to different input features (e.g. word
embedding feature, name list feature, etc.) concate-

nated together 9.
The input sentence matrix S is then passed

through a series of network layer transformations,
described in the following subsections.

3.1.1 Convolutional Layer

We apply a convolution operation between the in-
put sentence matrix S and a filter matrix F ∈ Rm×d

of context window size m, resulting in a column
vector c ∈ R|s|. The filter matrix F will slide (with
a stride of 1) along the row dimension of S, generat-
ing a value for each word in the sentence. Instead of
a single filter matrix, n filter matrices are applied to

9Categorical features are converted to one-hot encodings.
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the sentence matrix S, resulting in a convolutional
feature matrix C ∈ R|s|×n.

To learn non-linear decision boundaries, each el-
ement of C passes through the hyperbolic tangent
tanh activation function.

3.1.2 Max-Pooling Layer

The output matrix C is then passed to the max-
pooling layer. This layer will return the maximum
value of each column.

3.1.3 Hidden Dense Layer

A hidden dense layer with h hidden units is ap-
plied to the output of the pooling layer, using Recti-
fied Linear Unit (ReLU) as the activation function.

3.1.4 Softmax Layer

A softmax layer receives the output of the previ-
ous dense layer and computes probability distribu-
tion over the possible categories. We include an ad-
ditional category “NIL” for the case where the sen-
tence contains no aspect category. Since a sentence
may contain more than one category, we output the
categories whose output probability value is greater
than a threshold t.

3.1.5 Network Training and Regularization

The stochastic gradient descent (SGD) algorithm
is used to train the CNN network, using the back-
propagation algorithm to compute the gradients. We
run SGD for e epochs, where a batch size of b sen-
tences is used. The categorical cross-entropy is used
as the loss function. To prevent overfitting, the loss
function is augmented with a L2 regularization term
(l2) for the parameters of the network. The Adadelta
update function (with a specific decay rate ρ and
constant ε) is used to control the learning rate.

The specific values used for the hyperparame-
ters of the network are tuned using 5-fold cross-
validation. The context window size m is set to 5.
The number of filter matrices n is set to 300. The
probability threshold t is set to 0.2. The number of
hidden units h is set to 100. The number of epochs e
is set to 50 and 100 for the restaurant and laptop do-
main respectively. The L2 regularization term l2 is
set to 0.01. The Adadelta decay rate ρ and constant
ε is set to 0.95 and 1e−6 respectively.

Restaurant
Feature F1
Word† 0.6432
+ Head Word 0.6558
+ Name List† 0.6670
+ Word Cluster 0.7128
+ CNN Probabilities 0.7510
CNN System 0.7333

Laptop
Feature F1
Word† 0.5178
+ Head Word† 0.5358
+ Word Cluster 0.5463
+ CNN Probabilities 0.5983
CNN System 0.5693

Table 1: Experimental results of 5-fold cross-validation for Slot

1. Besides using the feature stated in the current row, features

stated in all previous rows are also used. † indicates features

used in constrained systems.

3.2 Slot 1 Features

Besides the features described in Section 2, the prob-
ability output of the CNN system is used as addi-
tional features to our multi-class classification sys-
tem. The CNN system is trained on the following
input features: Word Embeddings, Name List (only
for the restaurant domain) and Word Cluster.

We performed 5-fold cross-validation experi-
ments to obtain performances of the system after
adding each feature group. Table 1 shows the ex-
perimental results.

We also include the 5-fold cross-validation per-
formances if we only use the CNN system output
for evaluation (last row). For both domains, the
CNN system achieves better performances than the
multi-class classification system without the neural
network features.

However, the best performances are achieved
when we used the CNN probability output as addi-
tional features to the multi-class classification sys-
tem. This suggests our approach of combining two
different machine learning systems is a feasible ap-
proach for the task.
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3.3 Opinion Target Extraction (Slot 2)

We treat opinion target extraction as a sequential la-
beling task. The sequential labeling classifiers are
trained using Conditional Random Fields (CRF).
Such approach is similar to previous work that
achieves state-of-the-art performances (Toh and Su,
2015). The implementation of CRF is provided by
the CRFsuite tool (Okazaki, 2007).

Similar to our previous work, for different eval-
uations involving Slot 2, we train different models.
For Slot 1 & 2 evaluation (multi setting), the explicit
opinion targets may be classified under more than
one category. Thus, a separate CRF model is trained
for each category C found in the training data, where
each model is trained using the corresponding BIO
labels: “B-C”, “I-C” and “O” (corresponding to start
of an opinion target, continuation of an opinion tar-
get and outside respectively).

For Slot 2 evaluation (single setting), only the tar-
get span is required. Thus, all categories are col-
lapsed into a single category (e.g. “TARGET”). A
single CRF model is trained using the labels “B-
TARGET”, “I-TARGET” and “O”.

We also enhance our existing CRF system by us-
ing the output of a Recurrent Neural Network (RNN)
system as additional features.

Specifically, we implement the Bidirectional
Elman-type RNN model described in Liu et al.
(2015)10. Such a model allows long-range depen-
dencies from the future as well as from the past to
be captured, which are beneficial for sequential la-
beling tasks. The last layer of the model is a fully
connected softmax layer to allow the model to out-
put probabilities.

3.3.1 Network Training and Regularization

The RNN network is trained using SGD for 20
epochs, using Nesterov momentum with a learning
rate of 0.05 and momentum of 0.9 and a batch size
of 100 sentences. The categorical cross-entropy is
used as the loss function, with L2 penalty of 0.01
for regularization. The number of hidden cell units
for both directions is set to 250.

10Only a single RNN model is trained with all categories col-
lapsed into a single category.

Restaurant (multi)
Feature F1
Word† .4413
+ Name List† .5672
+ Word Cluster .5877
+ RNN Probabilities 0.6285

Restaurant (single)
Feature F1
Word† 0.6151
+ Name List† 0.6768
+ DP Name List 0.6992
+ Word Cluster 0.7162
+ RNN Probabilities 0.7390
RNN System 0.7190

Table 2: Experimental results of 5-fold cross-validation for Slot

2. Besides using the feature stated in the current row, features

stated in all previous rows are also used. multi: Performances

of Slot 2 for Slot 1 & 2 evaluation (ignoring NULL targets).

single: Performances of Slot 2 for Slot 2 evaluation. † indicates

features used in constrained systems.

3.4 Slot 2 Features

Besides the features described in Section 2, the prob-
ability output of the RNN system is used as addi-
tional features to our CRF system. The RNN system
is trained on the following input features: Word Em-
beddings, Name List and Word Cluster.

We performed 5-fold cross-validation experi-
ments to obtain performances of the system after
adding each feature group. Table 2 shows the ex-
perimental results. We tune the system for two dif-
ferent settings: Slot 2 predictions used for Slot 1 &
2 evaluation (multi setting), and Slot 2 predictions
used for Slot 2 evaluation (single setting).

3.4.1 Slot 1 & 2

To generate the predictions for Slot 1 & 2 evalu-
ation, we combine Slot 1 and Slot 2 predictions to-
gether. First, we use all Slot 2 predictions used for
Slot 1 & 2 evaluation (multi setting). This covers the
cases for explicit targets. To include NULL targets,
we check the Slot 1 predictions for categories that
are not found in the Slot 2 predictions above. These
categories are assumed to belong to NULL targets.
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Slot 1
Restaurant Laptop

System Type Rank P R F1 Type Rank P R F1
NLANGP (U) U 1 0.7245 0.7362 0.7303 U 1 0.5685 0.4781 0.5194
NLANGP (C) C 14 0.6454 0.6662 0.6556 C 9 0.4897 0.4468 0.4673

1st U 1 0.7245 0.7362 0.7303 U 1 0.5685 0.4781 0.5194
2nd U 2 0.7269 0.7308 0.7289 U 2 0.4560 0.5319 0.4910
3rd U 3 0.7011 0.7483 0.7240 U 3 0.5000 0.4819 0.4908

Baseline C – 0.5419 0.6703 0.5993 C – 0.4592 0.3166 0.3748

Slot 2 Slot 1 & 2
Restaurant

System Type Rank P R F1 Type Rank P R F1
NLANGP (U) U 1 0.7549 0.6944 0.7234 U 1 0.5295 0.5227 0.5261
NLANGP (C) C 8 0.7256 0.5703 0.6386 C 3 0.4667 0.4482 0.4572

1st U 1 0.7549 0.6944 0.7234 U 1 0.5295 0.5227 0.5261
2nd U 2 0.7182 0.6912 0.7044 C 2 0.4901 0.4878 0.4889
3rd U 3 0.7510 0.6062 0.6709 C 3 0.4667 0.4482 0.4572

Baseline C – 0.5142 0.3856 0.4407 C – 0.3656 0.3912 0.3780
Table 3: Official results for our system, top three performing systems and baselines.

4 Results

We participated in both unconstrained and con-
strained settings for the English datasets. Table 3
presents the official results of our submission. For
comparison, the top three performing systems and
baseline results are included (Pontiki et al., 2016).

As shown from the table, our system is ranked 1st
for all four evaluations we participated (Slot 1 for
both restaurant and laptop domains, Slot 2 and Slot
1 & 2 for the English datasets). Similar to previ-
ous observation, the constrained systems achieved
lower results than the corresponding unconstrained
systems, demonstrating the use of external resources
are helpful for the task.

5 Feature Ablation

The feature ablation experimental results are shown
in Table 4 (Slot 1) and Table 5 (Slot 2). The neural
network features contributed the most performance
gains. However, using the Name List and Word
Cluster features do not seem to be particularly ef-
fective on the testing data: There are negligible or
negative performance gains for Slot 1. As these two
features are also used in the CNN system, it may

be redundant to include them again in the multi-
class classification system. In addition, the neural
network features may have become the dominant
features during training, affecting the usefulness of
other features.

Further investigation may be needed to identify
better ways of combining the different machine
learning systems together. For example, instead
of adding neural network probability output to our
multi-class classification system, we could instead
add our classifier probability output as additional
features to our CNN system.

6 Conclusion

In this paper, we describe our system used in classi-
fying aspect categories (Slot 1) and extracting opin-
ion targets (Slot 2). We explore the use of deep
learning systems to provide additional neural net-
work features to our existing system. Our system
is ranked 1st in the four evaluations on the English
datasets. In future, we hope to perform better fea-
ture engineering and explore how our deep learning
systems can be further enhanced for the task.
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Restaurant
Feature F1 Loss
All features 0.7303 –
- Word 0.7228 0.0075
- Head Word 0.7291 0.0012
- Name List 0.7314 -0.0011
- Word Cluster 0.7251 0.0052
- CNN Probabilities 0.6937 0.0366

Laptop
Feature F1 Loss
All features 0.5194 –
- Word 0.5082 0.0112
- Head Word 0.5282 -0.0088
- Word Cluster 0.5189 0.0005
- CNN Probabilities 0.4955 0.0239

Table 4: Results of ablation experiments on the testing data for

Slot 1. The columns are the resulting F1 measure and F1 loss

after removing a single feature group.

Restaurant
Feature F1 Loss
All features 0.7234 –
- Word 0.6907 0.0327
- Name List 0.6977 0.0257
- DP Name List 0.6957 0.0278
- Word Cluster 0.7086 0.0148
- RNN Probabilities 0.6813 0.0421

Table 5: Results of ablation experiments on the testing data for

Slot 2. The columns are the resulting F1 measure and F1 loss

after removing a single feature group.
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