thecerealkiller at SemEval-2016 Task 4: Deep Learning based System for
Classifying Sentiment of Tweets on Two Point Scale

Vikrant Yadav
Amazon.in
Hyderabad, India

vikrantiitrl@gmail.com

Abstract

In this paper, we propose a deep learning sys-
tem for classification of tweets on a two-point
scale. Our architecture consists of a multilay-
ered recurrent neural network having gated re-
current units. The network is pre-trained with
a weakly labeled dataset of tweets to learn
the sentiment specific embeddings. Then it is
fine tuned on the given training dataset of the
task 4B in SemEval-2016. The network does
very little pre-processing for raw tweets and
no post-processing at all. The proposed sys-
tem achieves 3rd rank on the leaderboard of
task 4B.

1 Introduction

Task 4 of SemEval-2016 (Nakov et al., 2016) -
Sentiment Analysis in Twitter- turned out to be the
most popular task of SemEval-2016. Among its sub-
tasks, sub-task B - Tweet classification according to
a two-point scale - was the 2nd most popular sub-
task. A total of 19 teams participated in it including
ours.

In this paper, we propose a multilayerd RNN
architecture for classifying tweets on a two-point
scale, namely, positive and negative. We first pre-
train the network with a weakly labeled corpus of
tweets, where labels are assigned based on the senti-
ment of the emoticon present in the tweets. It helps
the network to learn sentiment specific embeddings
of the words in the tweet. The network is then fine-
tuned on the dataset of tweets provided as part of the
sub-task 4B along with the training and development
dataset of SemEval-2013 task 2.

100

In the second section, we describe our architec-
ture. In third section, we explain our approach to
train the network. After that, we describe the exper-
imental setup and statistical properties of the data
used. In the end, we discuss our results on the test
dataset. We stood 3rd on the final leaderboard for
sub-task 4B.

2 Proposed System

In this section, we elaborate our proposed architec-
ture. The network is fed pre-processed tweets as in-
put and it predicts the binary label of the tweets. It
has 3 RNN layers each with gated recurrent units.
Then a sum layer is added to sum the hidden states
of the last recurrent layer over time. After that, a
dense layer is present followed by a single sigmoid
unit.

Now, we describe the components of our architec-
ture in brief.

2.1 Pre-processing

The tweets are pre-processed to remove any punctu-
ation if present. All URLs are encoded into a URL
token. All the user accounts mentioned in a tweet are
encoded as USER token. The tweet is converted to
lower-case before feeding to the network. Note that
we don’t remove any stop-words as they define use-
ful relationships between words and phrases. This
amount of pre-processing turned out to be sufficient
for the network to learn useful semantic and senti-
ment specific word-embeddings.

Proceedings of SemEval-2016, pages 100-102,
San Diego, California, June 16-17, 2016. (©2016 Association for Computational Linguistics

2.2 Embedding layer

The embedding layer maps a sequence of words
present in the input tweet to the corresponding fixed
length real valued vectors. The fixed length d is
called the dimension of the embeddings. The em-
bedding layer keeps track of the mapping so that the
correct embeddings gets updated while doing back-
propagation of the errors.

2.3 Recurrent layers

Recurrent neural networks are proved to be useful in
handling variable length sequences. A stacking of
recurrent layers on the top of each other allows the
semantic composition of representations of words
and phrases over time. We use the same intuition
in our architecture.

The embedding layer passes the embedding ma-
trix to the first recurrent layer. Each layer takes into
input an embedding matrix which it processes i.e.
updates its hidden state over time. The hidden states
are stored after each time-step and fed to the next
layer as input. Thus, the last layer outputs a matrix
of hidden states.

We prefer GRU(Gated Recurrent Unit) (Cho et
al., 2014) compared to a vanilla RNN unit. A classic
RNN is difficult to train, because the gradients ei-
ther tend to vanish or explode (Bengio et al., 1994).
A GRU unit takes care of this problem and is able
to cope with vanishing or exploding gradients while
capturing the information for longer periods of time.

2.4 Sum over time

This layer receives the time-distributed hidden state
matrix of the last recurrent layer as input where the
nth column describes the hidden state at nth time-
step. It outputs a vector where the kth element is
sum of the kth row in the hidden state matrix. This
helps to combine the sentiment specific representa-
tion of the phrases so as to yield an aggregate repre-
sentation.

2.5 Dense layer and output layer

The output of the sum layer is fully connected with
the dense layer consisting of rectified linear units.
The dense layer in turn is connected with the out-
put sigmoid units which predicts the probability of
assigning a positive or negative label for the input
tweet.

101

3 Approach to Train the Network

In this section, we describe our choice of training
algorithm and the regularization method.

3.1 Training algorithm

We use mini-batch gradient descent algorithm as our
choice of training algorithm. We utilized two Nvidia
GK104 series GPU hardware to make matrix-matrix
multiplications efficient. A mini-batch size of 128
is chosen for pre-training the network. We use rm-
sprop as an update rule for the parameters, an opti-
mizer which divides the gradient by an exponential
moving average of its squares.

3.2 Regularization

We use dropout (Srivastava, 2013) as the regularizer
to prevent our network from overfitting. Dropout se-
lects a fraction of the hidden units at random and sets
their output to zero and thus, prevents co-adaptation
of the features. However, it is tricky to be applied in
the RNN as it is capable of unsettling the recurrent
connections and thus, interfere with our recurrent
layer’s ability of retaining information for longer pe-
riods of time.

We choose the approach proposed in (Zaremba et
al., 2014) to apply dropout in our network where it
is being applied between inter-layer connections in-
stead of intra-layer connections. This doesnt inter-
fere with the recurrent updates in a layer and helps
prevent co-adaptation of the features at the same
time.

3.3 Pre-training the network

The training dataset provided as part of sub-task 4B
in Semeval-2016 contain very few samples to effec-
tively train our deep architecture. Thus, we used
a weakly labeled corpus of tweets, namely, Senti-
ment140 (Go et al., 2009), to pre-train our network
so as to learn semantic and sentiment specific repre-
sentation of words and phrases.

We take the learned weights of the trained net-
work as it is and fine tune them on the provided
training dataset of sub-task 4B along with training
and development dataset of task 2 in SemEval-2013.
The network uses validation scores as the metric to
do an early-stop while training. Macro-averaged re-
call, the official scoring metric of sub-task 4B, was

Type Dataset Positives | Negatives
Training | Twitter’16 8250 2500

+ Twitter’ 13
Testing | Twitter’16 8212 2337

Table 1: Statistical information of training and testing datasets.

Scoring-metric | Score | Best-score | Rank
AvgR 0.784 | 0.797 3
AvgF1 0.762 | 0.799 5
Accuracy 0.823 | 0.862 9

Table 2: Resulting scores on testing dataset. AvgR was the

official scoring metric of the task 4B.

also used as the validation scoring metric.

4 Experiments

4.1 Experimental settings

The statistical properties of training and testing
datasets are provided in Table 1.

For evaluation, we use official scoring metric of
Semeval-2016 task 4B - macro-averaged recall -
average of recalls for both positive and negative
classes.

The chosen parameters of our network are as fol-
lows: the maximum input sequence length is set
to 30, vocabulary size is 400000, dimensionality of
word embedding (d) is 100, recurrent units hidden
state vector size is 128, number of recurrent layers
is 3, number of hidden unit in dense layer is 256 with
relu activation. We used a dropout of 50% after each
layer while training.

4.2 Results

Results are shown in Table 2.

Our system produces a macro-averaged recall of
0.784, while the best system scored 0.797. Our
system’s performance with other scoring metrics is
also good, achieving 5th and 9th rank for macro-
averaged F1 and accuracy metric, respectively.

Our architecture uses very little pre-processing
compared to the other systems of Semeval-2016. It
is able to capture useful semantic relationships and
sentiment specific embeddings of words and phrases
using just the raw tweets. It can be improved by
adding handcrafted features such as topics, number
of positive-negative lexicons, etc. which we would
like to try in future.

102

5 Conclusion

In this paper, we proposed a deep learning system
for sentiment classification of tweets on a two-point
scale. Our architecture was able to capture complex
semantic relationships between words and phrases
of the input tweets to decide their final sentiment.
We show how to pre-train and fine-tune a deep net-
work like ours well from end-to-end using weakly
supervised dataset. Our system used very little pre-
processing before feeding the raw tweets to the net-
work. In future, we would like to use handcrafted
features in addition to the raw tweets to see if they
improve the overall score.

References

Y. Bengio, P. Simard, and P. Frasconi. 1994. Learning
long-term dependencies with gradient descent is diffi-
cult. Trans. Neur. Netw., 5(2):157-166, March.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. CoRR, abs/1409.1259.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
Technical report, Stanford University.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Veselin Stoy-
anov, and Fabrizio Sebastiani. 2016. SemEval-2016
task 4: Sentiment analysis in Twitter. In Proceedings
of the 10th International Workshop on Semantic Eval-
uation, SemEval 16, San Diego, California, June. As-
sociation for Computational Linguistics.

Nitin Srivastava. 2013. Improving neural networks with
dropout. PhD thesis. University of Toronto.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
CoRR, abs/1409.2329.

