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Abstract

We describe the systems we have used for
participating in Subtasks D (binary quan-
tification) and E (ordinal quantification) of
SemEval-2016 Task 4 “Sentiment Analysis
in Twitter”. The binary quantification sys-
tem uses a “Probabilistic Classify and Count”
(PCC) approach that leverages the calibrated
probabilities obtained from the output of an
SVM. The ordinal quantification approach
uses an ordinal tree of PCC binary quantifiers,
where the tree is generated via a splitting crite-
rion that minimizes the ordinal quantification
loss.

1 Introduction

This document describes the systems we have used
for participating in Subtasks D (binary quantifica-
tion) and E (ordinal quantification) of SemEval-
2016 Task 4 “Sentiment Analysis in Twitter”. In the
runs we have submitted no training data was used
other than the officially provided ones (indeed, the
only “external” data used were the sentiment lexi-
cons mentioned in Section 2).

Like a classification system, a system for per-
forming quantification consists of two main compo-
nents: (i) an algorithm for converting the objects of
interest (tweets, in our case) into vectorial represen-
tations that can be interpreted both by the learning
algorithm and, once it has been trained, by the quan-
tifier itself, and (ii) an algorithm for training quan-
tifiers from vectorial representations of training ob-
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jects. Section 2 will be devoted to discussing com-
ponent (i), while Sections 3 and 4 will be devoted
to discussing the two learning algorithms we have
deployed for the two tasks.

2 Features for detecting tweet sentiment

As in (Gao and Sebastiani, 2015; Gao and Sebas-
tiani, 2016), for building vectorial representations
of tweets we have followed the approach discussed
in (Kiritchenko et al., 2014, Section 5.2.1), since
the representations presented therein are those used
in the systems that performed best at both the Se-
mEval 2013 (Mohammad et al., 2013) and SemEval
2014 (Zhu et al., 2014) tweet sentiment classifica-
tion shared tasks.

The text is preprocessed by normalizing
URLs and mentions of users to the constants
http://someurl and @someuser, resp., after
which tokenisation and POS tagging is performed.
The binary features used (i.e., features denoting
presence or absence in the tweet) include word n-
grams, for n ∈ {1, 2, 3, 4}, and character n-grams,
for n ∈ {3, 4, 5}, whether the last token contains
an exclamation and/or a question mark, whether the
last token is a positive or a negative emoticon and,
for each of the 1000 word clusters produced with
the CMU Twitter NLP tool1, whether any token
from the cluster is present. Integer-valued features
include the number of all-caps tokens, the number
of tokens for each POS tag, the number of hashtags,
the number of negated contexts, the number of se-
quences of exclamation and/or question marks, and
the number of elongated words (e.g., cooooool).

1http://www.ark.cs.cmu.edu/TweetNLP/
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A key addition to the above is represented by fea-
tures derived from both automatically generated and
manually generated sentiment lexicons; for these
features, we use the same sentiment lexicons as used
in (Kiritchenko et al., 2014), which are all pub-
licly available. We omit further details concerning
our vectorial representations (and, in particular, how
the sentiment lexicons contribute to them), both for
brevity reasons and because these vectorial repre-
sentations are not the central focus of this paper; the
interested reader is invited to consult (Kiritchenko et
al., 2014, Section 5.2.1) for details.

3 Subtask D: Tweet quantification
according to a two-point scale

For the binary quantification task, we have per-
formed a thorough set of preliminary experiments
using 8 quantification methods from the literature,
i.e., Classify and Count (CC), Probabilistic Clas-
sify and Count (PCC) (Bella et al., 2010), Ad-
justed Classify and Count (ACC) (Gart and Buck,
1966), Probabilistic Adjusted Classify and Count
(PACC) (Bella et al., 2010), Expectation Maximiza-
tion for Quantification (EMQ) (Saerens et al., 2002),
SVMs optimized for KLD (SVM(KLD)) (Esuli and
Sebastiani, 2015), SVMs optimized for NKLD
(SVM(NKLD)) (Esuli and Sebastiani, 2014), and
SVMs optimized for Q (SVM(Q)) (Barranquero et
al., 2015).

All 8 methods are described in detail in (Gao and
Sebastiani, 2016), where we test them on a ternary2

tweet sentiment quantification task using 11 datasets
and 6 evaluation measures. The aim of (Gao and Se-
bastiani, 2016) was to test whether the conclusions
drawn from a previous experiment (Esuli and Se-
bastiani, 2015), where quantification was according
to topic and where texts were significantly longer
than tweets, were confirmed also in a context in
which quantification is according to sentiment and
the items are significantly shorter.

The preliminary experiments we performed for
the present work were carried out by training our
models on TRAIN+DEV and testing on DEVTEST.
For the first 5 methods mentioned at the beginning of
this section we make use of a standard SVM with a

2Differently from the present task, the datasets we used in
(Gao and Sebastiani, 2016) also used the Neutral class.

linear kernel, in the implementation made available
in the LIBSVM system3 (Chang and Lin, 2011). For
the other 3 methods we make use of an SVM for
structured output prediction, in the implementation
made available in the SVM-perf system4 (Joachims,
2005). For all 8 methods we optimize the C param-
eter (which sets the tradeoff between the training er-
ror and the margin) directly on DEVTEST by per-
forming a grid search on all values of type 10x with
x ∈ {−6, ..., 7}; we instead leave the other param-
eters at their default value. The PCC, PACC, EMQ
methods require the classifier to also generate poste-
rior probabilities; since SVMs do not natively gen-
erate posterior probabilities, for these three methods
we use the -b option of LIBSVM, which converts
the scores originally generated by SVMs into poste-
rior probabilities according to the algorithm of (Wu
et al., 2004).

The results of these preliminary experiments,
which are reported in Table 1, indicated PCC as
the best performer. These experiments by and large
confirmed the results of (Gao and Sebastiani, 2016),
where PCC was the best performer for 34 of the 66
combinations of 11 datasets × 6 evaluation mea-
sures. Instead, for none of the 66 combinations
SVM(KLD), which had been the best performer
in the experiments of (Esuli and Sebastiani, 2015)
(where it also outperformed PCC), was the best per-
former. In (Gao and Sebastiani, 2016) we conjec-
tured that this difference may be due to the fact
that in quantification by sentiment, class prevalences
tend to be fairly high (> .10), and that the exper-
iments of (Esuli and Sebastiani, 2015) mostly con-
cerned classes with low prevalence (< .10) or very
low prevalence (< .01), which tend to be the norm
in classification by topic.

As a result of all this, in this work we decided to
use PCC; Section 3.1 describes the PCC method in
detail.

3LIBSVM is available from http://www.csie.ntu.
edu.tw/˜cjlin/libsvm/

4SVM-perf is available from http://svmlight.
joachims.org/svm_struct.html . The modules that
customize it to KLD and NKLD were made available by
Andrea Esuli, while the module that customizes it to Q was
made available by José Barranquero.
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Table 1: Results of our preliminary experiments for 8 quantifi-
cation methods. The 2nd column indicates accuracy as mea-
sured via KLD (lower values are better), while the 3rd col-
umn indicates the value of the C parameter used, and which
had proved optimal when training on TRAIN+DEV and testing
on DEVTEST; boldface indicates the best performer.

KLD C
CC 0.0528275 0.00001

PCC 0.0278864 0.000001
ACC 0.0844489 0.0001

PACC 0.0509028 0.0001
EMQ 0.2215310 0.001

SVM(KLD) 0.0356832 0.001
SVM(NKLD) 0.1415660 0.001

SVM(Q) 0.0989133 0.1

3.1 Probabilistic Classify and Count (PCC)
The PCC method, originally introduced in (Bella et
al., 2010), consists in generating a classifier from
Tr, classifying the objects in Te, and computing
pTe(c) as the expected fraction of objects predicted
to belong to c. If by p(c|x) we indicate the posterior
probability, i.e., the probability of membership in c
of test object x as estimated by the classifier, and by
E[x] we indicate the expected value of x, this corre-
sponds to computing

p̂PCC
Te (c) = E[pTe(ĉ)]

=
1

|Te|
∑

x∈Te

p(c|x) (1)

where p̂MS (c) indicates the prevalence of class c in
set S as estimated via method M (the “hat” sym-
bol indicates estimation). The rationale of PCC is
that posterior probabilities contain richer informa-
tion than binary decisions, which are usually ob-
tained from posterior probabilities by thresholding.

For our final run, we have retrained the system
on TRAIN+DEV+DEVTEST, using the parameter
values which had performed best on DEVTEST in
the preliminary experiments. On the official test set
(Nakov et al., 2016) we obtained a KLD score of
0.055, and thus ranked 5th in a set of 14 participating
teams.

4 Subtask E: Tweet quantification
according to a five-point scale

Our goal in tackling the ordinal quantification task
has been to devise a new learning algorithm for or-

dinal quantification. We decided to aim for an algo-
rithm that (a) leverages the information inherent in
the class ordering, and (b) performs quantification
according to the Probabilistic Classify and Count
(PCC) method ((Bella et al., 2010) – see also (Gao
and Sebastiani, 2016, §4.2)), since this has proven
the best-performing method in the tweet quantifica-
tion experiments of (Gao and Sebastiani, 2016).

Ordinal quantification will be tackled by arrang-
ing the classes in the totally ordered set C =
{c1, ..., c|C|} into a binary tree. Given any j ∈
{1, . . . , (|C|−1)}, Cj = {c1, . . . , cj}will be called a
prefix of C, and Cj = {cj+1, . . . , c|C|} will be called
a suffix of C. Given any j ∈ {1, . . . , (|C| − 1)} and
a set S of items labeled according to C, by Sj we
denote the set of items in S whose class is in Cj , and
by Sj we denote the set of items in S whose class is
in Cj .

4.1 Generating a quantification tree
The algorithm for training a quantification tree is de-
scribed in concise form as Algorithm 1, and goes as
follows. Assume we have a training set Tr and a
held-out validation set V a of items labelled accord-
ing to C.

The first step (Line 3) consists in training (|C|−1)
binary classifiers hj , for j ∈ {1, . . . , (|C| − 1)}.
Each of these classifiers must discriminate between
Cj and Cj ; for training hj we will take the items in
Trj as the negative training examples and the items
in Trj as the positive training examples. We require
that these classifiers, aside from taking binary deci-
sions (i.e., predicting if a test item is in Cj or in Cj),
also output posterior probabilities, i.e., probabilities
p(Cj |x) and p(Cj |x) = (1− p(Cj |x)), where p(c|x)
indicates the probability of membership in c of test
object x as estimated by the classifier5.

The second step (Line 5) is building the ordi-
nal quantification (binary) tree. In order to do this,

5If the classifier only returns confidence scores that are not
probabilities (as is the case with many non-probabilistic classi-
fiers), the former must be converted into true probabilities. If
the score is a monotonically increasing function of the classi-
fier’s confidence in the fact that the object belongs to the class,
the conversion may be obtained by applying a logistic function.
Well-calibrated probabilities (defined as the probabilities such
that the prevalence pS(c) of a class c in a set S is equal to∑

x∈S p(c|x)) may be obtained by using a generalized logistic
function; see e.g., (Berardi et al., 2015, Section 4.4) for details.
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1 Function GenerateTree (C, T r, V a);
/* Generates the quantification tree

*/
Input : Ordered set C = {c1, ..., c|C|};

Set Tr of labelled items;
Set V a of labelled items;

Output: Quantification tree TC .

2 for j ∈ {1, ..., (|C| − 1)} do
3 Train classifier hj from Trj and Trj ;
4 end
5 TC ← Tree(C, {hj}, V a);
6 return TC ;

7 Function Tree (C,HC , V a);
/* Recursive subroutine for

generating the quantification tree

*/
Input : Ordered set C = {c1, ..., c|C|} of classes;

Set of classifiersHC = {h1, ..., h(|C|−1)};
Output: Quantification tree TC .

8 if C = {c} then
9 Generate a leaf node Tc;

10 return Tc;
11 else
12 ht ← arg min

hj∈HC
KLD(p, p̂, hj , V a);

13 Generate a node TC and associate ht to it;
14 H′C ← {h1, ..., h(t−1)};
15 H′′C ← {h(t+1), ..., h(|C|−1)};
16 LChild(TC)← Tree(Ct,H′C, V a);
17 RChild(TC)← Tree(Ct,H′′C , V a);
18 return TC ;
19 end

Algorithm 1: Function GenerateTree for
generating an ordinal quantification tree.

among the classifiers hj we pick the one (let us as-
sume it is ht) that displays the highest quantification
accuracy (Line 12) on the validation set V a, and we
place it at the root of the binary tree. We then repeat
the process recursively on the left and on the right
branches of the binary tree (Lines 14 to 17), thus
building a fully grown quantification tree. Quantifi-
cation is performed according to the PCC method
described in Section 3.1. We measure the quantifi-
cation accuracy of classifier hj via Kullback-Leibler
Divergence (KLD), defined as

KLD(p, p̂, hj , S) =
∑

c∈C
pS(c) log

pS(c)

p̂S(c)
(2)

where p̂ is the distribution estimated via PCC using
the posterior probabilities generated by hj .

4.2 Estimating class prevalences via an ordinal
quantification tree

The algorithm for estimating class prevalences by
using an ordinal quantification tree is described in
concise form as Algorithm 2, and goes as follows.
Essentially, for each item x ∈ Te and for each class
c ∈ C, we compute (Line 6) the posterior probabil-
ity p(c|x); the estimate p̂Te(c) is computed as the
average, across all x ∈ Te, of p(c|x). The posterior
probability p(c|x) is computed in a recursive, hier-
archical way (Lines 13 to 18), i.e., as the probability
that the binary classifiers that lie on the path from
the root to leaf c, would classify item x exactly in
leaf c (i.e., that they would route x exactly to leaf
c). This probability is computed as the product of
the posterior probabilities returned by the classifiers
that lie on the path from the root to leaf c.

An example quantification tree for a set of |C| = 6
classes is displayed in Figure 1; for brevity, classes
are represented by natural numbers, the total order
defined on them is the order defined on the natu-
ral numbers, and sets of classes are represented by
sequences of natural numbers. Note that, as exem-
plified in Figure 1, our algorithm generates trees for
which (a) there is a 1-to-1 correspondence between
classes and leaves of the tree, (b) leaves are ordered
left to right in the same order of the classes in C, and
(c) each internal node represents a decision between
a suffix and a prefix of C.

Point (c) is interesting, and deserves some discus-
sion. Indeed, internal node “1234 vs. 56” is trained
by using items labelled as 1, or 2, or 3, or 4 as nega-
tive examples and items labelled as 5, or 6 as positive
examples; however, by looking at Figure 1, it would
seem intuitive that items labelled as 6 should not be
used, since the node is root to a subtree where class 6
is not an option anymore. The reason why we do use
items labelled as 6 (which is the reason the node is
labelled “1234 vs. 56” and not “1234 vs. 5”) is that,
during the classification stage, the classifier associ-
ated with the node might be asked to classify an item
whose true label is 6, and which has thus been mis-
classified up higher in the tree. In this case, it would
be important that this item be classified as 5, since
this minimizes the contribution of this item to mis-
classification error; and the likelihood that this hap-
pens is increased if the classifier is trained to choose
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1 Function QuantifyViaHierarchicalPCC (Te, TC);
/* Estimates class prevalences on Te

using the quantification tree */
Input : Unlabelled set Te;

Quantification tree TC ;
Output: Estimates p̂(c) for all c ∈ C;

2 for c ∈ C do
3 p̂(c)← 0
4 end
5 for x ∈ Te do
6 CPost(x, TC , 1); /* Compute the {p(c|x)}

*/
7 for c ∈ C do

8 p̂(c)← p̂(c) +
p(c|x)
|Te| ;

9 end
10 end
11 return {p̂(c)}

12 Procedure CPost (x, TC , SubP );
/* Recursive subroutine for computing

all the posteriors {p(c|x)} */
Input : Unlabelled item x;

Quantification tree TC ;
Probability SubP of current subtree;

Output: Posteriors {p(c|x)};
13 if TC = {c} then

/* TC is a leaf, labelled by class
c */

14 p(c|x)← SubP ;
15 else
16 CPost(x, LChild(TC), p(Ct|x) · SubP );
17 CPost(x, RChild(TC), p(Ct|x) · SubP );

/* p(Ct|x) and p(Ct|x) are the
posteriors returned by the
classifier associated with the
root of TC */

18 end

Algorithm 2: Function QuantifyViaHierar-
chicalPCC for estimating prevalences via an
ordinal quantification tree.

between 1234 and 56, rather than between 1234 and
5.

Note also that this is one aspect for which our al-
gorithm is a true ordinal classification algorithm; if
there were no order defined on the classes this policy
would make no sense.

A second reason why our algorithm is an in-
herently ordinal quantification algorithm is that the
groups of classes (such as 1234 and 56) between
which a binary classifier needs to discriminate are

Figure 1: An example ordinal quantification tree.

groups of classes that are contiguous in the order
defined on C. It is because of this contiguity that
the structure of the trees we generate makes sense:
if, say, classes {1, ..., 6} represent degrees of posi-
tivity of product reviews, with 1 representing most
negative and 6 representing most positive, the group
56 may be taken to represent the positive reviews
(to different degrees), while 1234 may be taken to
represent the reviews that are not positive; a group
such as, say, 256, would instead be very hard to in-
terpret, since it is formed of non-contiguous classes
that have little in common with each other.

Finally, we remark that our ordinal quantifica-
tion algorithm does not depend on the fact that PCC
is the chosen quantification method, and could be
adapted to work with other such methods, such as
e.g., SVM(KLD). Indeed, if SVM(KLD) is the cho-
sen quantification method, in Algorithm 1 we only
need to change the learning method we use (Line 3),
and change the recursive subroutine CPost (Lines 12
to 17) in such a way that, by recursively making bi-
nary choices down the tree, it picks exactly one out
of the |C| leaf classes instead of computing the pos-
terior probabilities for all of them6.

6The code that implements the PCC method for bi-
nary quantification, and our method for ordinal quantifica-
tion, is available from http://alt.qcri.org/tools/
quantification/

62



4.2.1 Our run
In our preliminary run over the DEVTEST set, our
system obtained an EMD value of 0.210; for ob-
taining this, the optimization of the C parameter
(see Section 3.1) was carried out using EMD as
a criterion, i.e., the parameter that yielded the best
EMD value on DEVTEST was chosen. For com-
parison, we also run on DEVTEST a baseline mul-
ticlass PCC system, i.e, one which performs quan-
tification according to the PCC method and does not
take the order on the classes into account; the base-
line system, after parameter optimization, obtained
an EMD value of 0.222, with a 5.64% deterioration
over our system. As a result, we decided to tackle
the unlabelled set with our system as described in
Sections 4.1 and 4.2. Note that, unlike for Subtask
D, in Subtask E we did not have a range of other
datasets to perform preliminary experiments with; as
a result, the only choice that could make sense here
was using the system which had performed best on
DEVTEST.

On the official test set (Nakov et al., 2016) we
obtained an EMD score of 0.243, ranking 1st in a
set of 10 participating systems, with a high margin
over the other ones (systems from rank 2 to rank 8
obtained EMD scores between 0.316 and 0.366).
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