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Abstract

This paper reports our submissions to seman-
tic textual similarity task, i.e., task 2 in Se-
mantic Evaluation 2015. We built our sys-
tems using various traditional features, such as
string-based, corpus-based and syntactic simi-
larity metrics, as well as novel similarity mea-
sures based on distributed word representa-
tions, which were trained using deep learning
paradigms. Since the training and test datasets
consist of instances collected from various do-
mains, three different strategies of the usage
of training datasets were explored: (1) use all
available training datasets and build a unified
supervised model for all test datasets; (2) se-
lect the most similar training dataset and sep-
arately construct a individual model for each
test set; (3) adopt multi-task learning frame-
work to make full use of available training set-
s. Results on the test datasets show that using
all datasets as training set achieves the best av-
eraged performance and our best system ranks
15 out of 73.

1 Introduction

Estimating the degree of semantic similarity be-
tween two sentences is the building block of many
natural language processing (NLP) applications,
such as textual entailment (Zhao et al., 2014a), tex-
t summarization (Lloret et al., 2008), question an-
swering (Celikyilmaz et al., 2010), etc. Therefore,
semantic textual similarity (STS) has been received
an increasing amount of attention in recent years,
e.g., the Semantic Textual Similarity competition-
s in Semantic Evaluation Exercises have been held

from 2012 to 2014. This year the participants in the
STS task in SemEval 2015 (Agirre et al., 2015) are
required to rate the similar degree of a pair of sen-
tences by a value from 0 (no relation) to 5 (semantic
equivalence) with an optional confidence score.

To identify semantic textual similarity of tex-
t pairs, most existing works adopt at least one of
the following feature types: (1) string based simi-
larity (Bär et al., 2012; Jimenez et al., 2012) which
employs common functions to calculate similari-
ties over string sequences extracted from original
strings, e.g., lemma, stem, or n-gram sequences; (2)
corpus based similarity (Šarić et al., 2012; Han et al.,
2013) where distributional models such as Laten-
t Semantic Analysis (LSA) (Landauer and Dumais,
1997), are used to derive the distributional vectors of
words from a large corpus according to their occur-
rence patterns, afterwards, similarities of sentence
pairs are calculated using these vectors; (3) knowl-
edge based method (Shareghi and Bergler, 2013;
Mihalcea et al., 2006) which estimates the similari-
ties with the aid of external resources, such as Word-
Net1. Among them, lots of researchers (Sultan et
al., 2014; Han et al., 2013) leverage different word
alignment strategies to bring word-level similarity to
sentence-level similarity.

In this work, we first borrow aforementioned ef-
fective types of similarity measurements including
string-based, corpus-based, syntactic features and so
on, to capture the semantic similarity between two
sentences. Beside, we also present a novel feature
type based on word embeddings that are induced us-
ing neural language models over a large raw cor-

1http://wordnet.princeton.edu/
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pus (Mikolov et al., 2013b). Then these features are
served as input of a regression model. Notice that,
the organizers provide us seventeen training dataset-
s and five test datasets, which are drawn from dif-
ferent but related domains. Accordingly, we build
three different systems in terms of the usage of train-
ing datasets: (1) exploit all the training datasets and
train a single model for all test datasets; (2) choose
one domain-dependent training dataset for each test
dataset using cosine distance selection criterion and
train models individually for each test dataset; (3) to
overcome overuse or underuse of training datasets,
we adopt multi-task learning (MTL) framework to
make full use of available training datasets, that is,
for each test set the main task is built upon designat-
ed training datasets and the rest training datasets are
used in the auxiliary tasks.

The rest of this paper is organized as follows.
Section 2 describes various similarity measurements
used in our systems. System setups and experimen-
tal results on training and test datasets are presented
in Section 3. Finally, conclusions and future work
are given in Section 4.

2 Semantic Similarity Measurements

Following our previous work (Zhao et al., 2014b),
we adopted the traditional widely-used features (i.e.,
string, corpus, syntactic features) for semantic simi-
larity measurements. In this work, we also proposed
several novel features using word embeddings.

2.1 Preprocessing

Several text preprocessing operations were per-
formed before we extracted features. We first con-
verted the contractions to their formal writings, for
example, doesn’t is rewritten as does not. Then the
WordNet-based Lemmatizer implemented in Natu-
ral Language Toolkit2 was used to lemmatize al-
l words to their nearest base forms in WordNet, for
example, was is lemmatized to be. After that, We re-
placed a word from one sentence with another word
from the other sentence if these two words share the
same meaning, where WordNet was used to look up
synonyms. No word sense disambiguation was per-
formed and all synsets in WordNet for a particular
lemma were considered.

2http://nltk.org/

2.2 String Based Features

We firstly recorded length information of given
sentences pairs using the following eight mea-
sure functions: |A|, |B|, |A − B|, |B − A|, |A ∪ B|, |A ∩
B|, (|A|−|B|)

|B| ,
(|B|−|A|)

|A| , where |A| stands for the num-
ber of non-repeated words in sentence A , |A − B|
means the number of unmatched words found in A

but not in B , |A ∪ B| stands for the set size of non-
repeated words found in either A or B and |A ∩ B|
means the set size of shared words found in both A

and B .
Motivated by the hypothesis that two texts are

considered to be semantic similar if they share more
common strings, we adopted the following five type-
s of measurements: (1) longest common sequence
similarity on the original and lemmatized sentences;
(2) Jaccard, Dice, Overlap coefficient on orig-
inal word sequences; (3) Jaccard similarity using
n-grams, where n-grams were obtained at three dif-
ferent levels, i.e., the original word level (n=1,2,3),
the lemmatized word level (n=1,2,3) and the char-
acter level (n=2,3,4); (4) weighted word overlap
feature (Šarić et al., 2012) that takes the impor-
tance of words into consideration, where Web 1T
5-gram Corpus3 was used to estimate the impor-
tance of words; (5) sentences were represented as
vectors in tf*idf schema based on their lemmatized
forms and then these vectors were used to calcu-
late cosine, Manhattan, Euclidean distance
and Pearson, Spearmanr, Kendalltau corre-
lation coefficients.

Totally, we got thirty-one string based features.

2.3 Corpus Based Features

The distributional meanings of words own good se-
mantic properties and Latent Semantic Analysis (L-
SA) (Landauer and Dumais, 1997) is widely used to
estimate the distributional vectors of words. Hence,
we adopted two distributional word sets released by
TakeLab (Šarić et al., 2012), where LSA was per-
formed on the New York Times Annotated Corpus
(NYT)4 and Wikipedia. Then two strategies were
used to convert the distributional meanings of words
to sentence level: (i) simply summing up the distri-
butional vector of each word w in the sentence, (ii)

3https://catalog.ldc.upenn.edu/LDC2006T13
4https://catalog.ldc.upenn.edu/LDC2008T19
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using the information content (Šarić et al., 2012) to
weigh the LSA vector of each word w and then sum-
ming them up. After that we used cosine similarity
to measure the similarity of two sentences based on
these vectors. Besides, we used the Co-occurrence
Retrieval Model (CRM) (Weeds, 2003) as another
type of corpus based feature. The CRM was cal-
culated based on a notion of substitutability, that is,
the more appropriate it was to substitute word w1 in
place of word w2 in a suitable natural language task,
the more semantically similar they were.

At last, we obtained six corpus based features.

2.4 Syntactic Features

Besides semantic similarity, we also estimated the
similarities of sentence pairs at syntactic level. S-
tanford CoreNLP toolkit (Manning et al., 2014) was
used to obtain the POS tag sequences for each sen-
tence. Afterwards, we performed eight measure
functions described above in Section 2.2 over these
sequences, resulting in eight syntactic features.

2.5 Word Embedding Features

Recently, deep learning has archived a great success
in the fields of computer vision, automatic speech
recognition and natural language processing. One
result of its application in NLP, i.e., word embed-
dings, has been successfully explored in named en-
tity recognition, chunking (Turian et al., 2010) and
semantic word similarities(Mikolov et al., 2013a),
etc. The distributed representations of words (i.e.,
word embeddings) learned using neural network-
s over a large raw corpus have been shown that
they performed significantly better than LSA for p-
reserving linear regularities among words (Mikolov
et al., 2013a). Due to its superior performance,
we adopted word embeddings to estimate the sim-
ilarities of sentence pairs. In our experiments, we
used two different word embeddings: word2vec
(Mikolov et al., 2013b) and Collobert and West-
on embeddings (Turian et al., 2010). The word
embeddings from Word2vec are distributed within
the word2vec toolkit5 and they are 300-dimensional
vectors learned from Google News Corpus which
consists of over a 100 billion words. The Col-
lobert and Weston embeddings are learned over a

5https://code.google.com/p/word2vec

part of RCV1 corpus which consists of 63 mil-
lions words, resulting in 100-dimensional contin-
uous vectors. To obtain the sentence representa-
tions from word representations, we used idf to
weigh the embedding vectors of words and sim-
ply summed them up. Although the word embed-
ding is obtained from large corpus in considera-
tion of its context, using this bag of words (BOW)
representation of sentences, the current word se-
quence in sentence is neglected. After that, we
used cosine, Manhattan, Euclidean func-
tions and Pearson, Spearmanr, Kendalltau
correlation coefficients to calculate the similarities
based on these synthetic sentence representations.

2.6 Other Features

Besides the shallow semantic similarities between
words and strings, we also calculated the similari-
ties of named entities in two sentences using longest
common sequence function. Seven types of named
entities, i.e., location, organization, date, money,
person, time and percent, recognized by Stanford
CoreNLP toolkit (Manning et al., 2014) were con-
sidered. We designed a binary feature to indicate
whether two sentences in a given pair have the same
polarity (i.e., affirmative or negative) by looking up
a manually-collected negation list with 29 negation
words (e.g., scarcely, no, little). Finally, we obtained
in eight features.

3 Experiments and Results

3.1 Datasets

Participants built their systems on seventeen dataset-
s in development period and evaluated their systems
on five test datasets in test period. Each dataset con-
sists of a number of sentence pairs and each pair has
a human-assigned similarity score in the range [0, 5]
which increases with similarity. The datasets were
collected from different but related domains. Due
to limitation of page length, we only provide a brief
description of test sets in Table 1. Refer (Agirre et
al., 2014) for more details. As we can see from this
table, datasets from different domains have distinct
average lengths of sentence A and B.
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Dataset # of pairs average length
answers-forums 2000 (17.56,17.37)
answers-students 1500 (10.49,11.17)

belief 2000 (15.16,14.56)
headlines 1500 ( 7.86,7.91 )
images 1500 (10.59,10.58)

Table 1: The statistics of test datasets for STS task in
SemEval 2015.

3.2 Experimental Setups
We built three different systems according to the us-
age of training datasets as follows.
allData: We used all the training datasets and
built a single global regression model regardless of
domain information of different test datasets.
DesignatedData: For each test dataset, we cal-
culated the cosine distance with every candidate
training dataset. Then the training dataset with
the lowest distance score was chose as the train-
ing dataset to fit a regression model for specific test
dataset.

Dist(Xtst, Xc) = 1−
∑

xi∈Xtst

∑
xj∈Xc

cosine(xi, xj)
|Xtst||Xc|

MTL: On one hand, taking all the training dataset-
s into consideration may hurt the performance since
training and test datasets are from different domains.
On the other hand, using the most related dataset-
s leads to insufficient usage of available datasets.
Therefore, we considered to adopt multi-task learn-
ing framework to take full advantage of available
training sets. Under multi-task learning framework,
a main task learns together with other related aux-
iliary tasks at the same time, using a shared repre-
sentation. This often leads to a better model for the
main task, because it allows the learner to use the
commonality among the tasks. Hence, for each test
dataset we selected the datasets whose cosine dis-
tances are less than 0.1 (at least one training set)
as training set to construct the main task, and then
used the remaining training sets to construct auxil-
iary tasks. In this work, we adopted the robust multi-
task feature learning (rMTFL) (Gong et al., 2012),
which assumes that the model W can be decom-
posed into two components: a shared feature struc-
ture P that captures task relatedness and a group-
sparse structure Q that detects outlier tasks. Specifi-

cally, it solves following formulation:

min
W

t∑
i=1

∥WF
i Xi − Yi∥2

F + ρ1∥P∥2,1 + ρ2∥QT ∥2,1

subject to : W = P + Q

where Xi denotes the input matrix of the i-th task,
Yi denotes its corresponding label, Wi is the model
for task i, the regularization parameter ρ1 controls
the joint feature learning, and the regularization pa-
rameter ρ2 controls the columnwise group sparsity
on Q that detects outliers.

In our preliminary experiments, several regres-
sion algorithms were examined, including Support
Vector Regression (SVR, linear), Random Forest
(RF) and Gradient Boosting (GB) implemented in
the scikit-learn toolkit (Pedregosa et al., 2011). The
system performance is evaluated using Pearson cor-
relation (r).

3.3 Results on Training Data
To configure the parameters in the three systems,
i.e., the trade-off parameter c in SVR, the number
of trees n in RF, the number of boosting stages n
in GB in allData and DesignatedData, ρ1,2

in MTL, we conducted a series of experiments on
STS 2014 datasets (eleven datasets for training, six
datasets for development). Table 2 shows the Pear-
son performance of our systems on developmen-
t datasets. We explored a large scale of parameter
values and only the best result for each algorith-
m was listed due to the limitation of page length.
The numbers in the brackets in algorithms colum-
n indicate the parameter values and those in bold
font represent the best performance for each dataset
and system. From the table we find that (1) GB
and SVR obtain the best averaged results in sys-
tem allData and DesignatedData respective-
ly; (2) although DesignatedData uses only one
most-closely dataset for training for each test set, it
achieves comparable or even better performance on
some datasets when compared with allData; (3)
our multi-task learning framework can indeed boost
the performance.

3.4 Results on Test Data
According to the results on training datasets,
we configured three submitted runs as following:
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Algorithms deft-forum deft-news headlines images OnWN tweet-news Mean
SVR (0.01) 0.458 0.761 0.728 0.813 0.836 0.727 0.721

RF (65) 0.491 0.751 0.718 0.789 0.873 0.741 0.727
GB (50) 0.499 0.760 0.725 0.805 0.863 0.739 0.732

SVR (0.1) 0.549 0.725 0.765 0.790 0.810 0.740 0.730
RF (75) 0.513 0.709 0.741 0.768 0.814 0.767 0.719
GB (50) 0.504 0.694 0.738 0.790 0.809 0.751 0.714

MTL (0.1, 0.1) 0.556 0.772 0.738 0.808 0.819 0.745 0.740

Table 2: Pearson of allData,DesignatedData using different algorithms and MTL on STS 2014 datasets.

RUN answers-forums answers-students belief headlines images Mean Rank
ECNU-1stSVMALL 0.715 0.712 0.728 0.798 0.847 0.755 15
ECNU-2ndSVMONE 0.687 0.733 0.698 0.820 0.836 0.747 19
ECNU-3rdMTL 0.692 0.752 0.695 0.805 0.858 0.752 18
DLSCU-S1 0.739 0.773 0.749 0.825 0.864 0.785 1
ExBThemis-themisexp 0.695 0.778 0.748 0.825 0.853 0.773 2

Table 3: Results of our three runs on STS 2015 test datasets, as well as top rank runs.

ECNU-1stSVMALL which builds a global model
on all datasets using SVR with parameter c=0.1;
ECNU-2ndSVMONEwhich fits individual model for
each test set on a designated training set using GB
with parameter n=50; ECNU-3rdMTL which em-
ploys robust multi-task feature learning with param-
eter ρ1 = ρ2 = 0.1.

Table 3 summarizes the results of our sub-
mitted runs on test datasets officially released
by the organizers, as well as the top rank run-
s. In terms of mean Pearson measuremen-
t, system ECNU-1stSVMALL performs the best,
which is comparable to ECNU-3rdMTL. Howev-
er, the ECNU-2ndSVMONE performs the worst.
This is inconsistent with the results on train-
ing datasets wherein ECNU-3rdMTL yields the
best performance. On test dataset, we find that
ECNU-3rdMTL has much worse performances
than ECNU-1stSVMALL on answers-forums and
belief while it achieves much better results on
answers-students, headlines and images dataset-
s. The possible reason may be that the train-
ing dataset selected from the candidate dataset-
s in main task are ill-suited for answers-forums
and belief test datasets, which is also verified by
the results of system ECNU-2ndSVMONE. It is
noteworthy that on answers-students and headlines
ECNU-2ndSVMONE achieves much better results
than ECNU-1stSVMALL although the former sys-

tem only uses much less training instances (750,750
vs. 10592). In addition, the difference between top
system DLSCU-S1 and our systems is about 3%,
which means our systems are promising.

4 Conclusion

We used traditional NLP features including string-
based, corpus-based and syntacitc features, for tex-
tual semantic similarity estimation, as well as nov-
el word embedding features. We also presented
three different systems to compare the strategies of
different usage of training data, i.e., single super-
vised learning with all training datasets and individ-
ual training dataset for each test dataset, and multi-
task learning framework. Our best system achieves
15th place out of 73 systems on test datasets. Notice-
ably each system achieves the best performance on
different test datasets, which indicates the usage of
training datasets is important, we will explore more
sophisticated way to utilize these training datasets in
future work.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort,
et al. 2011. Scikit-learn: Machine learning in Python.
The Journal of Machine Learning Research, 12:2825–
2830.

Ehsan Shareghi and Sabine Bergler. 2013. CLaC-CORE:
Exhaustive feature combination for measuring textual
similarity. In Second Joint Conference on Lexical and
Computational Semantics (*SEM).

Md Arafat Sultan, Steven Bethard, and Tamara Sumner.
2014. DLS@CU: sentence similarity from word align-
ment. In SemEval 2014, pages 241–246.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 384–394.
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