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Abstract

This paper describes MITRE’s participation
in the Paraphrase and Semantic Similar-
ity in Twitter task (SemEval-2015 Task 1).
This effort placed first in Semantic Similar-
ity and second in Paraphrase Identification
with scores of Pearson’s r of 61.9%, F1 of
66.7%, and maxF1 of 72.4%. We detail the
approaches we explored including mixtures
of string matching metrics, alignments us-
ing tweet-specific distributed word represen-
tations, recurrent neural networks for model-
ing similarity with those alignments, and dis-
tance measurements on pooled latent semantic
features. Logistic regression is used to tie the
systems together into the ensembles submitted
for evaluation.

1 Introduction

Paraphrase identification is the task of judging if two
texts express the same or very similar meaning. Au-
tomatic identification of paraphrases has practical
applications for a range of domains, including news
summarization, information retrieval, essay grading,
and evaluation of machine translation outputs. Fur-
thermore, work on paraphrase detection tends to ad-
vance the state of art in modeling semantics and se-
mantic similarity in natural language in general.
Current approaches to paraphrase detection vary
widely. The Microsoft Research Paraphrase Corpus,
with pairs of sentences from newswire text, serves as
a benchmark for the task (Dolan et al., 2004). One
top result on this dataset uses features from surface
characteristics of text (Madnani et al., 2012). An-
other system with comparable results models sen-
tences as hierarchical compositions of distributed
word embeddings (Socher et al., 2011). SemEval-
2015 Task 1 (Xu et al., 2015), with a corpus drawn
from Twitter, offers an opportunity to test paraphrase

12

systems in a domain with an expanded vocabulary
and informal grammar.

Our contribution builds upon the recent success
of distributed representations of language (Mikolov
et al., 2013a; Pennington et al., 2014). We further
aim to minimize reliance on language- and domain-
dependent tools. However we do not possess enough
labeled paraphrase data to train a generalized model
of word composition. Instead we explore models
that examine low-dimensional relationships between
individual pairs of aligned words, and combine the
above with string similarity features that generalize
well to out-of-vocabulary terms.

In the remainder of this paper, we describe our
high-performing system for modeling semantic sim-
ilarity between two tweets. In Section 2 we describe
the data, task, and evaluation. In Section 3 we dis-
cuss details of systems we built to solve the semantic
similarity task. We describe our experiments on dif-
ferent parameterizations in Section 4. In Section 5
we present performance results for our ensembles
and all subsystems, and in Section 6 we summarize
our findings.

2 Task, data and evaluation

Paraphrase and Semantic Similarity in Twitter was a
shared task organized within SemEval-2015.

The task organizers released 18,762 pairs of
English-language tweets with a 70/25/5 split for
train, development, and test sets. The organizers re-
moved URLs, deleted non-alphanumeric characters,
and provided part of speech tags. Tweet pairs were
judged by five human annotators to be a paraphrase
(e.g. Amber alert gave me a damn heart attack and
That Amber alert scared the crap out of me) or not
(e.g. My phone is annoying me with these amber
alert and Am I the only one who dont get Amber
alert). Approximately 35% of provided pairs are
paraphrases. For each pair, task participants predict
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a binary label and optionally provide a confidence
score. Systems were evaluated by F1 measure, F1 at
the best confidence threshold, and Pearson correla-
tion with expert annotation.

3 System overview

We created an ensemble of seven systems which
each independently predicted a semantic similarity
score. Some features were reused among the compo-
nents, including word embeddings and alignments.

3.1 Twitter Word Embeddings

We used word2vec to learn distributed representa-
tions of words and phrases from an unlabeled cor-
pus of 330.3 million tweets sampled in 2013 from
Twitter’s public streaming API. Retweets and non-
English messages were not included in the sam-
ple. Text was lowercased and processed to mimic
the style of the task data. We applied word2phrase
(Mikolov et al., 2013b) twice consecutively to iden-
tify phrases comprised of up to four words. We then
trained a skip-gram model of size 256 for the 1.87
million vocabulary items which appeared at least 25
times, using a context window of 10 words and 15
negative samples per positive example. These hy-
perparameters were selected based on our prior ex-
perience in training embeddings for identification of
word analogies.

3.2 Alignment

Comparing semantics in two tweets can be imagined
as a tallying process. One finds some semantic atom
on the left hand side and searches for it in the right
hand side. If found, it gets crossed off. Otherwise,
that atom contributes to a difference. Repeat on the
other side. This idealized process is reminiscent of
finding translation equivalences for training machine
translation systems (Al-Onaizan et al., 1999).

To this end, we built an alignment system on top
of word embeddings. Each tweet was converted into
a bag of words, and two different alignments were
created. The min alignment maximized the cosine
similarity of aligned pairs under the constraint that
no word could be aligned more than once. The max
alignment was constrained such that each word must
be paired with at least one other, and the total num-
ber of edges in the alignment can be no more than
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word count of the longer string. LPSOLVE was em-
ployed to find the assignment maximizing these cri-
teria (Berkelaar et al., 2004).

3.3 Seven Systems

Random Projection The random projection fam-
ily of Locality Sensitive Hashing algorithms is a
probabilistic technique for reducing high dimen-
sional inputs to a fixed-length low dimensional
sketch (Charikar, 2002), in which similar inputs
yield similar hashes. This characteristic is useful
for approximate nearest neighbor search and online
clustering (Petrovié et al., 2010), but we use it here
to obtain an unsupervised similarity metric that iden-
tifies string overlap at many levels of granularity.
Concretely, we extract the set of all word unigrams,
word bigrams, and character n-grams of lengths 2
through 5. These features are input to 2048 inde-
pendent binary classifiers with random weights, and
each classifier contributes a single bit to the resulting
hash. We assess similarity of two tweets by measur-
ing the Hamming distance between their bit vectors.

Recurrent Neural Network One common ap-
proach to paraphrase detection is to construct a
model of each sentence before learning a distance
function over these representations. We chose to
sidestep this global semantics modeling problem
and instead directly measured the relationships be-
tween embedded lexical items.

In particular, we used a Recurrent Neural Net-
work to examine the sequence of aligned word pairs
obtained from the min alignment process described
in section 3.2. For each aligned pair, we computed
descriptive statistics that were used as input to the
network: cosine similarity and Euclidean distance
of the aligned word embeddings, the magnitudes
of each word’s vector, and the relative position of
each word in the sentence. These features enabled
the network to consider the quality of the alignment
without introducing sparsity by including the word
vectors themselves. The RNN also received two
global features at each time step: the ratio of sen-
tence lengths and the normalized Hamming distance
computed via random projection as described above.

The RNN contained 8 input features, 16 hid-
den units, and a single output, composed as an
Elman network (Elman, 1990) with tied weights.



We unfolded it using backpropagation through
time (Williams and Zipser, 1990) to create a deep
network with as many hidden layers as there were
lexical units in the shorter sentence. We trained
the RNN with stochastic gradient descent and a for-
mulation of dropout (Hinton et al., 2012) that ran-
domly removed a single word pair from each train-
ing sequence. Parameters were tuned on the devel-
opment set, including a minibatch of 20, a learning
rate of 0.05 or 0.06, hyperbolic tangent activation
functions, and early stopping after about 2000 iter-
ations. Two RNNs were used in the final ensemble,
each trained with different learning rates.

Paris: String Similarity MITRE entered a sys-
tem based on string similarity metrics in the 2004
Pascal RTE competition (Bayer et al., 2005). We re-
vivified the code base (called 1ibparis) and up-
dated it for this evaluation. Eight different string
similarity and machine translation evaluation ap-
proaches are implemented in this package; mea-
sures include an implementation of the MT evalu-
ation BLEU (Papineni et al., 2002); WER, a com-
mon speech recognition word error rate based on
Levenshtein distance (Levenshtein, 1966); WER-g,
an error rate similar to WER, but with denomina-
tor based on the min edit traceback (Foster et al.,
2003); the MT evaluation ROUGE (Lin and Och,
2004); a simple position-independent error rate sim-
ilar to PER as described in Leusch et al. (2003); both
global and local similarity metrics often used for bi-
ological string comparison as described in Gusfield
(1997). Finally, there are precision and recall mea-
sures based on bags of all substrings (or n-grams in
word tokenization).

In total we computed 22 metrics for a pair of
strings. The metrics were run on both lowercased
and original versions as well as on word tokens
and characters, yielding 88 string similarity features.
Some of the metrics are not symmetric, so they were
run both forward and reversed based on presentation
in the dataset yielding 176 features. Finally, for each
feature value z, log(x) was added as a feature, pro-
ducing a final count of 352 string similarity features.
We used LIBLINEAR with these features to build a
L1-regularized logistic regression model.

Simple Alignment Measures Section 3.2 de-
scribes methods we used for aligning two strings.
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We built one component that computed similarity
between tweets using simple metrics applied only to
the aligned word pairs. Mean vectors and pooled
component-wise min and max vectors were com-
puted for both sides of the two different types of
alignments. Those six pairs of vectors were com-
pared using cosine distance, Manhattan distance,
and Euclidean distance, resulting in eighteen fea-
tures. Separately, the alignments were traversed and
pairs of word vectors were compared using the three
distance functions. The means of those comparisons
produced six more features. L2-regularized logistic
regression combined these 24 features into a single
measure of semantic similarity.

Similarity Matrices, Averaged and Min/Max
Two subsystems drew upon a similarity matrix and
dynamic pooling technique presented in Socher et
al. (2011). This method considers distance between
all syntactically meaningful subunits of two sen-
tences. First, a representation is induced for each
node of the parse tree of two sentences, starting from
word embeddings at leaf nodes. Then a similarity
matrix is created from measurements of Euclidean
distance between every pair of nodes. Finally, a dy-
namic pooling scheme reduces this to a fixed-size
representation that is used as input to a logistic re-
gression classifier. For one subsystem in MITRE’s
contribution, nodes were represented as averages of
their child nodes; for another, nodes were repre-
sented as the concatenation of the minimum and
maximum of the child nodes.

Normalized Averages This subsystem computed
an unsupervised distance metric based on semantic
features. We first replaced each word in the tweet
with its synonym from the Twitter normalization
lexicon (Han and Baldwin, 2011), for example con-
verting tv to television. The embeddings of these
words were used in experiments on weighted aver-
aging and pooling, folding of part-of-speech tags,
and various distance and similarity metrics. The best
F1 score on the development set was achieved by av-
eraging the word vectors and computing Euclidean
distance between the two tweets’ resulting vectors.

3.4 Ensembles

The predictors described above were selected for in-
clusion in a larger ensemble on the basis of their



Name Factored | Ablated
BLEU 61.5 64.6
ROUGE 60.2 63.8
PER 60.0 64.4
substring bags 58.7 63.5
WER 58.0 63.9
WER-g 57.9 63.9
global sim o7.7 64.1
local sim 55.9 63.1
none — 63.9

Table 1: Dev set F1 scores for string similarities.

performance on the development set. Each compo-
nent’s semantic similarity score contributed to the
final prediction with a weighting determined by L2-
regularized logistic regression. Binary paraphrase
labels were assigned by choosing an ensemble score
threshold that optimized development set F1.

The ensemble described in this paper was submit-
ted for scoring under the name MITRE IKR. A sec-
ond submission was identical with one exception:
its supervised subsystems were retrained on the con-
catenation of the train and development data.

4 Experiments

In all experiments, systems were trained while omit-
ting debatable examples with scores of 2 as sug-
gested by the task organizers. The development set
was used both to fit the hyperparameters (ablations,
lambdas) and the eventual ensemble.

String Similarity Ablations The MT evaluation
metrics and string similarities contributed varying
amounts to that system. In Table 1 we show the
score achieved by the logistic regression system
built using just that one measure (in the Factored
column) as well as the F1 achieved by the logistic
regression when only that one measure is left out
(Ablated column). BLEU was omitted from the sub-
system as a result of this analysis.

Ensemble Construction We focused our ensem-
bles only on the output of our individual compo-
nents, ignoring the features from the original data
they attempt to model. Table 3 shows the weights of
these components. Note that NormalizedAvg pro-
duced larger outputs than the rest; as a result its co-
efficient is about 10 times smaller than its effect.
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System Pearson F1 | maxFl1
MITRE 61.9 | 66.7 71.6
RTM-DCU 57.0 | 54.0 69.1
HLTC-UST 56.3 | 65.1 67.6
ASOBEK 504 | 67.2 66.3
MITRE components
RNN 60.8 71.8
Paris 58.7 68.2
RandProj 54.9 64.6
SimMat_avg 54.6 64.7
SimMat_minmax 53.5 62.8
Aligner 51.8 61.9
NormalizedAvg 45.8 61.1

Table 2: Test scores of Semantic Similarity Systems (%).

5 Results

The evaluation of our components on the compe-
tition test set is shown in Table 2, along with a
sample of top-scoring competitors. Our best en-
semble achieves 0.619 Pearson correlation with ex-
pert judgments, a state-of-the-art result. In contrast,
the correlation of crowdsourced annotations with ex-
pert ratings is 0.735 (Xu et al., 2015). Our sys-
tem’s F1 on the binary paraphrase judgment task was
0.667, with a maximum F1 of 0.716 using an opti-
mal threshold. Additionally several individual com-
ponents performed well in isolation. The recurrent
neural network alone achieved Pearson of 0.608 and
amax F1 of 0.718.

6 Conclusion

Seven models of semantic similarity were combined
for paraphrase detection in Twitter. This ensemble
placed first in the Semantic Similarity competition
organized within SemEval-2015 Task 1. The simi-
larity judgments showed 0.619 correlation with ex-
pert judgment, a relative improvement of 8.6% over
other published results (Xu et al., 2015).

Our best performing single system represents a
novel departure from existing paraphrase detection
approaches. The recurrent neural network makes
use of the relationships between aligned word pairs,
an approach which we feel is well-suited to informal
contexts where explicit models of syntax face addi-
tional challenges.



Component P Component P
RNNI1 —1.89 || SimMat_minmax 0.84
RNN2 —1.11 || Aligner 0.28
Paris —1.81 || NormalizedAvg —0.034
SimMat_avg | —1.28 || bias 0.91
RandProj 1.11

Table 3: Final MITRE component coefficients in the en-
semble logistic regression.
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