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Abstract

This paper proposes neural networks for inte-
grating compositional and non-compositional
sentiment in the process of sentiment compo-
sition, a type of semantic composition that op-
timizes a sentiment objective. We enable in-
dividual composition operations in a recursive
process to possess the capability of choosing
and merging information from these two types
of sources. We propose our models in neural
network frameworks with structures, in which
the merging parameters can be learned in a
principled way to optimize a well-defined ob-
jective. We conduct experiments on the Stan-
ford Sentiment Treebank and show that the
proposed models achieve better results over
the model that lacks this ability.

1 Introduction

Automatically determining the sentiment of a
phrase, a sentence, or even a longer piece of text
is still a challenging problem. Data sparseness en-
countered in such tasks often requires to factorize
the problem to consider smaller pieces of compo-
nent words or phrases, for which much research has
been performed on bag-of-words or bag-of-phrases
models (Pang and Lee, 2008; Liu and Zhang, 2012).
More recent work has started to model sentiment
composition (Moilanen and Pulman, 2007; Choi and
Cardie, 2008; Socher et al., 2012; Socher et al.,
2013), a type of semantic composition that opti-
mizes a sentiment objective. In general, the com-
position process is critical in the formation of the
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sentiment of a span of text, which has not been well
modeled yet and there is still scope for future work.

Compositionality, or non-compositionality, of the
senses of text spans is important for language under-
standing. Sentiment, as one of the major semantic
differential categories (Osgood et al., 1957), faces
the problem as well. For example, the phrase must
See or must try in a movie or restaurant review often
indicates a positive sentiment, which, however, may
be hard to learn from the component words. More
extreme examples, e.g., slangs like bad ass, are not
rare in social media text. This particular example
can actually convey a very positive sentiment even
though its component words are very negative. In
brief, a sentiment composition framework that can
consider both compositional and non-compositional
sentiment is theoretically interesting.

From a more pragmatical viewpoint, if one is
able to reliably learn the sentiment of a text span
(e.g., an ngram) holistically, it would be desirable
that a composition model has the ability to de-
cide the sources of knowledge it trusts more: the
composition from the component words, the non-
compositional source, or a soft combination of them.
In such a situation, whether the text span is actually
composable may be blur or may not be a concern.

In general, the composition of sentiment is a
rather complicated process. As a glimpse of ev-
idence, the effect of negation words on changing
sentiment of their scopes appears to be a compli-
cated function (Zhu et al., 2014). The recently pro-
posed neural networks (Socher et al., 2013; Socher
et al., 2011) are promising, for their capability of
modeling complicated functions (Mitchell, 1997) in
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general, handling data sparseness by learning low-
dimensional embeddings at each layer of compo-
sition, and providing a framework to optimize the
composition process in principled way.

This paper proposes neural networks for integrat-
ing compositional and non-compositional sentiment
in the process of sentiment composition. To achieve
this, we enable individual composition operations
in a recursive process to possess the capability of
choosing and merging information from these two
types of sources. We propose our models in neu-
ral network frameworks with structures (Socher et
al., 2013), in which the merging parameters can
be learned in a principled way to optimize a well-
defined objective. We conduct experiments on the
Stanford Sentiment Treebank and show that the pro-
posed models achieve better results over the model
that does not consider this property.

2 Related work

Composition of sentiment Early work on modeling
sentiment does not examine semantic composition
closely (Pang and Lee, 2008; Liu and Zhang, 2012),
as mentioned above. Recent work has considered
sentiment-oriented semantic composition (Moilanen
and Pulman, 2007; Choi and Cardie, 2008; Socher et
al., 2012; Socher et al., 2013), or simply called senti-
ment composition in this paper. For example, Moila-
nen and Pulman (2007) used a collection of hand-
written compositional rules to assign sentiment val-
ues to different granularities of text spans. Choi
and Cardie (2008) proposed a learning-based frame-
work. The more recent work of (Socher et al., 2013)
proposed models based on neural networks that do
not rely on any heuristic rules. Such models work
in a bottom-up fashion over a tree to infer the sen-
timent label of a phrase or sentence as a composi-
tion of the sentiment expressed by its constituting
parts. The approach leverages a principled method,
the forward and backward propagation, to optimize
the system performance. In this paper, we follow the
neural network approach to integrate compositional
and non-compositional sentiment in sentiment com-
position.

Prior knowledge of sentiment Integrating non-
compositional sentiment into the composition pro-
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cess can be viewed as introducing some prior sen-
timent knowledge, as in general the sentiment of a
word or a phrase perceived independent of its con-
text is often referred to as prior sentiment. Word-
level prior sentiment is typically annotated in man-
ual sentiment lexicons (Wilson et al., 2005; Hu
and Liu, 2004; Mohammad and Turney, 2010),
or learned in an unsupervised or semisupervised
way (Hatzivassiloglou and McKeown, 1997; Esuli
and Sebastiani, 2006; Turney and Littman, 2003;
Mohammad et al., 2009). More recently, senti-
ment indicators, such as emoticons and hashtags,
are utilized (Go et al., 2009; Davidov et al., 2010;
Kouloumpis et al., 2011; Mohammad, 2012; Mo-
hammad et al., 2013a). With enough data, such
freely available (but noisy) annotation can be used to
learn the sentiment of ngrams. In our study, we will
investigate in the proposed composition models the
effect of automatically learned sentimental ngrams.

3 Prior-enriched semantic networks

In this paper, we propose several neural networks
that enable each composition operation to pos-
sess the ability of choosing and merging senti-
ment from lower-level composition and that from
non-compositional sources. We call the networks
Prior-Enriched Semantic Networks (PESN). We
present several specific implementations based on
RNTN (Socher et al., 2013); the latter has showed
to be a state-of-the-art sentiment composition frame-
work. However, the realization of a PESN node is
not necessarily only tied with RNTN.

Figure 1 shows a piece of PESN. Each of the three
big nodes, i.e., N1, No, and N3, corresponds to a
node in a constituency parse tree; e.g., /N3 may cor-
respond to the phrase not a must try, where N1 and
Ny are not and a must try, respectively. We ex-
tend each of the nodes to possess the ability to con-
sider sentiment from lower-level composition and
non-compositional sources. In node /N3, knowledge
from the lower-level composition is represented in
the hidden vector ¢3, which is merged with non-
compositional knowledge represented in es, and the
merged information is saved in mg. The black box
in the center performs the actual merging, which in-
tegrates the two knowledge sources in order to min-



imize an overall objective function that we will dis-
cuss in detail later. The recursive neural networks
and the forward-backward propagation over struc-
tures (Socher et al., 2013; Goller and Kchler, 1996)
provide a principled way to optimize the whole net-
work.

Figure 1: A prior-enriched semantic network (PESN) for
sentiment composition. The three nodes, N1, Ns, and
N3, correspond to three nodes in a constituency parse
tree, and each of them consider sentiment from lower-
level composition (41, i3, ¢3) and from non-compositional
sentiment (e, ea, €3).

3.1 Regular bilinear merging

The most straightforward way of implementing a
PESN node is probably through a regular bilinear
merging. Take node N3 in Figure 1 as an example;
the node vector mg will be simply merged from 73
and e3 as follows:

mg = tanh(W,, [é‘j +bm) (1)

Again, vector i3 contains the knowledge from the
lower-level composition; es is a vector representing
non-compositional sentiment information, which
can be either from human annotation or automati-
cally learned resources. Note that in the network,
all hidden vectors m and ¢ (including word embed-
ding vectors) have the same dimensionality d, but
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the non-compositional nodes, i.e., the nodes e , do
not necessarily have to have the same number of el-
ements, and we let [ be their dimensionality. The
merging matrix W, is d-by-(d+1).

As in this paper we discuss PESN in the frame-
work of RNTN, computation outside the nodes
Ny, N, N3 follows that for the standard three-way
tensors in RNTN. That is, the hidden vector 3 is
computed with the following formula:

T
i = tcmh([Z;] vl [Zj + W, [Z;]) 2

where, W, € Rdx(d-i—d) and V, € R(d—i—d)x(d-ﬁ-d)xd
are the matrix and tensor of the composition func-
tion used in RNTN, respectively, each of which is
shared over the whole tree in computing vectors 71,
’iQ, and ’i3.

3.2 Explicitly gated merging

Compared to the regular bilinear merging model, we
here further explicitly control the input of the com-
positional and non-compositional semantics. Ex-
plicitly gating neural network has been studied in the
literature. For example, the long short-term mem-
ory (LSTM) utilizes input gates, together with out-
put gates and forget gates, to guide memory blocks
to remember/forget history (Hochreiter and Schmid-
huber, 1997).

For our purpose here, we explore an input gate to
explicitly control the two different input sources. As
shown in Figure 2, an additional gating layer g3 is
used to control i3, es explicitly.

I/VgE €3
g3 =o( +by) (3)
ngi3

ms = tanh(Wp(gs ® [2]) +bn) @)

The sign ® is a Hadamard product; o is a logis-
tic sigmoid function instead of a fanh activation,
which makes the gating signal g3 to be in the range
of [0, 1] and serve as a soft switch (not a hard binary



Figure 2: An input-gated network that explicitly controls
the compositional and non-compositional sentiment in-
put.

0/1 switch) to explicitly gate 73 and e3. Note that
elsewhere in the network, we still use tanh as our
activation function. In addition, W,, € R and
W,, € R4 are the weight matrices used to calcu-
late the gate vector.

3.3 Confined-tensor-based merging

The third approach we use for merging composi-
tional and non-compositional knowledge employs
tensors, which are able to explore multiplicative
combination among variables. Tensors have already
been successfully used in a wide range of NLP
tasks in capturing high-order interactions among
variables. The forward computation of mg follows:

AT . .
ms = tanh( [23} 1Ll {13] + W {2]) 5)

€3 €3

where V%Zd] e R(d+Dx(d+)xd jg the tensor m that

defines multiple bilinear forms, and the matrix W,
is as defined in the previous models.

As we focus on the interaction between i3 and e3,
we force each slice of tensor, e.g. Vn[f ], to have zero-
valued blocks. More specifically, the top-right d-by-
I block of the piece matrix V! (k € {1...d}) and
the bottom-left /-by-d block are non-zero parame-
ters, used to capture multiplicative, element-pair in-
teractions between 23 and eg, while the rest block are
set to be zero, to ignore interactions between those
variables within 73 and those within e3. This does
not only make the model focus on the interaction
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between vector 7 and e, it also helps significantly re-
duce the number of parameters to estimate, which,
otherwise, could potentially lead to overfitting. We
call this model confined-tensor-based merging.

3.4 Learning and inference

Objective The overall objective function in learning
PESN, following (Socher et al., 2013), minimizes
the cross-entropy error between the predicted dis-
tribution y*¢" € R*! at a node 4 and the target
distribution #* € R°*! at that node, where ¢ is the
number of sentiment categories. PESN learns the
parameters that are used to merge the compositional
and non-compositional sentiment so that the merg-
ing operations integrate the two sources in minimiz-
ing prediction loss. The neural network over struc-
tures provides a principled framework to optimize
these parameters.

More specifically, the error over an entire sen-
tence is calculated as a regularized sum:

E@0) =) tilogy*™™; + Al0*  (6)
i

where, A is the regularization parameter, j € c de-
notes the j-th element of the multinomial target dis-
tribution, § are model parameters that will be dis-
cussed below, and ¢ iterates over all nodes i, (e.g.,
11, 22, and ¢3) in Figure 1, where the model predicts
sentiment labels.

Backpropagation over the structures To minimize
E(0), the gradient of the objective function with
respect to each of the parameters in 6 is calcu-
lated efficiently via backpropagation through struc-
ture (Socher et al., 2013; Goller and Kchler, 1996),
after computing the prediction errors in forward
propagation with formulas described above.

Regular bilinear merging The PESN implemented
with simple bilinear merging has the following
model parameters: 0 = (V,., Wy, Wy, Wigper, L).
As discussed above, V,. and W, are the tensor and
matrix in RNTN; W, is the weight matrix for merg-
ing the compositional and non-compositional senti-
ment vectors. L denotes the vector representations
of the word dictionary, and Wi, is sentiment clas-
sification matrix used to predict sentiment label at a



node. Backpropagation on the regular bilinear merg-
ing node follows a standard derivative computation
in a regular feed-forward network, which we skip
here.

Explicitly gated merging In this model, in addition
to W,,, we further learn two weight matrices W,
and W, as introduced in Formula 3 and 4 above.
Consider Figure 2 and let §"*3 denote the error mes-
sages passed down to node ms. The error messages
are passed back to i3 directly through the Hadamard
product and also through the gate node g3. The for-
mer, denoted as 64" is calculated with:

5T = (5 @ g3)[1 : d] )

where, g3 is calculated with Formula 3 above in the
forward process; [1 : d] means taking the first d ele-
ments of the vector yielded by the Hadamard prod-
uct; the rest [d+ 1 : d+(] elements of the Hadamard
production are discarded, as we do not update es,
which is given as our prior knowledge.
The error messages passed down to gate vector gs
is computed with
13 /
59 = §"™ @ [63] ® s (g3) (8)
where, s'(.) is the element-wise derivative of logis-
tic function, which can be calculated only using s(.),

as s(.)(1 — s(.)). The derivative of W, can be cal-
culated with:

OF93

Ge

= (6%[1 : d])e )

Similarly, partial derivatives over W, can be cal-
culated. These values will be summed to the to-
tal derivative of Wy, and W,,, respectively. With
these notations, the error messages passed down to
13 through the gate can then be computed with:

sisgate _ WgTi(ags [d+1:d+1]) (10)

and the total error messages to node ¢3 is then:

5i3,t0tal _ (61'3,dir+5i3,gate+6i3,local)®f/(2.3) (11)
5

where §%1°@! is the local error message from the
sentiment prediction errors performed at the node i3
itself to obtain the total error message for ¢3, which
is in turn passed down through regular RNTN tensor
to the lower levels. f’ (.) is the element-wise deriva-
tive of tanh function.

Confined-tensor-based merging In confined-tensor-
based merging, the error messages passed to the two
children i3 and e3 is computed with:

52‘3,63 — (Wg;(;mg) ® f/( [(Z;;]) + 6tns (12)

where,

€3

d . .
e =i [ e s )
(13)

where the error messages to i3 are the first d num-
bers of elements of §?°3. The rest elements of §%:¢3
are discarded; as mentioned above, we do not update
es3 as it is given as the prior knowledge. We skip the
derivative for the W,,,,. While the derivative of each
slice k(k = 1,...,d) of the tensor V' is calculated
with:

oE™3 _ ¢mg,down i3 13 !
e 1

Again, the full derivative for V,,, and W,, is the
sum of their derivatives over the trees. After the er-
ror message passing from mg to ¢3 is obtained, it can
be summed up with the local error message from the
sentiment prediction errors at the node i3 itself to
obtain the total error message for i3, which is in turn
used to calculate the error messages passed down as
well as the derivative in the lower-level tree.

4 Experiments

4.1 Data

We use the Stanford Sentiment Treebank (Socher
et al., 2013) in our experiments. The data contain
about 11,800 sentences from the movie reviews that
were originally collected by Pang and Lee (2005).



The sentences were parsed with the Stanford parser
(Klein and Manning, 2003). Phrases at all the tree
nodes were manually annotated with sentiment val-
ues. We use the same split of the training and test
data as in (Socher et al., 2013) to predict the sen-
timent categories of the roots (sentences) and the
phrases, and use the same evaluation metric, clas-
sification accuracy, to measure the performances.

4.2 Obtaining non-compositional sentiment

In our experiments, we explore in sentiment com-
position the effect of two different types of non-
compositional sentiment: (1) sentiment of ngrams
automatically learned from an external, much larger
corpus, and (2) sentiment of ngrams assigned by hu-
man annotators.

Following the method proposed in (Mohammad
et al., 2013b), we learn sentimental ngrams from
Tweets. The unsupervised approach utilizes hash-
tags, which can be regarded as conveying freely
available (but noisy) human annotation of sentiment.
More specifically, certain words in tweets are spe-
cially marked with the hash character (#) to indi-
cate the topic, sentiment polarity, or emotions such
as joy, sadness, angry, and surprised. With enough
data, such artificial annotation can be used to learn
the sentiment of ngrams by their likelihood of co-
occurring with such hashtagged words.

More specifically, a collection of 78 seed hash-
tags closely related to positive and negative such as
#good, #excellent, #bad, and #terrible were used (32
positive and 36 negative). These terms were chosen
from entries for positive and negative in the Roget’s
Thesaurus. A set of 775,000 tweets that contain at
least a positive hashtag or a negative hashtag were
used as the learning corpus. A tweet was considered
positive if it had one of the 32 positive seed hash-
tags, and negative if it had one of the 36 negative
seed hashtags. The association score for an ngram
w was calculated from these pseudo-labeled tweets
as follows:

score(w) = PMI(w, positive) — PMI(w, negative)
15)

where PMI stands for pointwise mutual information,
and the two terms in the formula calculate the PMI
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between the target ngram and the pseudo-labeled
positive tweets as well as that between the ngram
and the negative tweets, respectively. Accordingly,
a positive score(.) indicates association with pos-
itive sentiment, whereas a negative score indicates
association with negative sentiment.

We use in our experiments the bigrams and tri-
grams learned from the dataset with the occurrences
higher than 5. We assign these ngrams into one
of the 5 bins according to their sentiment scores
obtained with Formula 15: (—o0, 2], (-2, —1],
(—1,1), [1,2), and [2,+00). Each ngram is now
given a one-hot vector, indicating the polarity and
strength of its sentiment. For example, a bigram
with a score of -1.5 will be assigned a 5-dimensional
vector [0,1,0,0,0], indicating a weak negative.
Note that PESN can also take into other forms
of sentiment embeddings, such as those learned in
(Tang et al., 2014).

In addition, the Stanford Sentiment Treebank con-
tains manually annotated sentiment for each indi-
vidual phrase in a parse tree, so we use such an-
notation but not other manual lexicons, by assum-
ing such annotation fits the corpus itself the best.
Specifically, we use bigram and trigram annotation
in the treebank. Note that even longer ngrams are
much sparser and probably less useful in general,
one may learn sentiment for multi-word expressions
of a larger length, which we will leave as future
work.

4.3 Results

Overall prediction performance Table 1 shows
the accuracies of different models on Stanford Sen-
timent Treebank. We evaluate the models on 5-
category sentiment prediction at both the sentence
(root) level and at all nodes (including roots).! The
results reported in Table 1 are all based on the ver-
sion 3.3.0 of the Stanford CoreNLP? and our imple-
mentation of PESN on it. The CoreNLP includes
a java implementation of RNTN.? To make the re-
sults reported in the table comparable, we trained the

'The package only gives approximate accuracies for 2-
category sentiment, which are not included here in the table.

>http://nlp.stanford.edu/sentiment/code.html

3The matlab code used in (Socher et al., 2013) is not pub-
lished.



Models

sentence-level (roots)

all phrases (all nodes)

(1) RNTN 42.44 79.95
(2) Regular-bilinear (auto) 42.37 79.97
(3) Regular-bilinear (manu) 42.98 80.14
(4) Explicitly-gated (auto) 42.58 80.06
(5) Explicitly-gated (manu) 43.21 80.21
(6) Confined-tensor (auto) 42.99 80.49
(7) Confined-tensor (manu) 43.757% 80.6671

Table 1: Model performances (accuracies) on predicting 5-category sentiment at the sentence (root) level and phrase-
level on Stanford Sentiment Treebank. The numbers in the bold font are the best performances achieved on the two
tasks. Both results are statistically significantly better (p < 0.05) than the corresponding RNTN results.

RNTN models with the default parameter* and run
the training from 5 different random initializations,
and report the best results we observed.

The rows in the table marked with aufo are models
using the automatically learned ngrams, and those
marked with manu using manually annotated senti-
ment for bigrams and trigrams. Note that the non-
compositional sentiment of a node is only used to
predict the sentiment of phrases above it in the tree.
For example, in Figure 1 discussed earlier, the effect
of e; and ey will be used to predict the sentiment
of i3 and other node ¢ above, but not that of 7; and
1o themselves, avoiding the concern of using the an-
notation of a tree node to predict the sentiment of
itself.

The models in general benefit from incorporating
the non-compositional knowledge. The numbers in
the bold font are the best performance achieved on
the two tasks. While using the simple regular bi-
linear merging shows some gains, the more compli-
cated models achieve further improvement.

Above we have seen the general performance of
the models. Below, we take a closer look at the
prediction errors at different depths of the senti-
ment treebank. The depth here is defined as the
longest distance between a tree node and its descen-
dant leafs. In Figure 3, the x-axis corresponds to
different depths and y-axis is the accuracy. The fig-
ure was drawn with the RNTN and the model (7) in
Table 1, so as to study the compositional property in
the ideal situation where the lexical has a full cover-
age of bigrams and trigrams.

*java -mx8g edu.stanford.nlp.sentiment.SentimentTraining -
numHid 25 -trainPath train.txt -devPath dev.txt -train -model
model.ser.gz
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Figure 3: Errors made at different depths in the sentiment
tree bank.

The figure shows that using the confined tensor
to combine holistic sentiment information outper-
forms the original RNTN model that does not con-
sider this, starting from depth 3, showing the benefit
of using holistic bigram sentiment. The improve-
ment increases at depth 4 (indicating the benefit of
using trigram sentiment), and then was propagated
to the higher levels of the tree. As discussed above,
we only use non-compositional sentiment of a node
to predict the sentiment of the phrases above it in
the tree but not the node itself. And the system still
needs to balance which source it trusts more, by op-
timizing the overall objective.

Although the empirical improvement may depend
on the percentage of non-compositional instances in
a data set or the sentiment that need to be learned
holistically, we present here the first effort, accord-
ing to our knowledge, on studying the concern of in-



tegrating compositional and non-compositional sen-
timent in the semantic composition process.

5 Conclusions and future work

This paper proposes models for integrating com-
positional and non-compositional sentiment in the
process of sentiment composition. To achieve this,
we enable each composition operation to be able to
choose and merge information from these two types
of sources. We propose to implement such mod-
els within neural network frameworks with struc-
tures (Socher et al., 2013), in which the merging pa-
rameters can be optimized in a principled way, to
minimize a well-defined objective. We conduct ex-
periments on the Stanford Sentiment Treebank and
show that the proposed models achieve better results
over the model that does not consider this property.

Although the empirical improvement may depend
on the percentage of non-compositional instances in
a data set or the sentiment that need to be learned
holistically, we present here the first effort, accord-
ing to our knowledge, on studying the basic concern
of integrating compositional and non-compositional
sentiment in composition. While we focus on senti-
ment in this paper, investigating compositional and
non-compositional semantics for general semantic
composition with neural networks is interesting to
us as an immediate future problem, as such mod-
els provide a principled way to optimize the over-
all objective over the sentence structures when we
consider both compositional and non-compositional
semantics.
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