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Abstract

This paper describes and analyzes our Se-
mEval 2014 Task 1 system. Its features
are based on distributional and denota-
tional similarities; word alignment; nega-
tion; and hypernym/hyponym, synonym,
and antonym relations.

1 Task Description

SemEval 2014 Task 1 (Marelli et al., 2014a) eval-
uates system predictions of semantic relatedness
(SR) and textual entailment (TE) relations on sen-
tence pairs from the SICK dataset (Marelli et al.,
2014b). The dataset is intended to test compo-
sitional knowledge without requiring the world
knowledge that is often required for paraphrase
classification or Recognizing Textual Entailment
tasks. SR scores range from 1 to 5. TE relations
are ‘entailment,’ ‘contradiction,’ and ‘neutral.’

Our system uses features that depend on the
amount of word overlap and alignment between
the two sentences, the presence of negation, and
the semantic similarities of the words and sub-
strings that are not shared across the two sen-
tences. We use simple distributional similarities
as well as the recently proposed denotational sim-
ilarities of Young et al. (2014), which are intended
as more precise metrics for tasks that require en-
tailment. Both similarity types are estimated on
Young et al.’s corpus, which contains 31,783 im-
ages of everyday scenes, each paired with five de-
scriptive captions.

2 Our System

Our system combines different sources of seman-
tic similarity to predict semantic relatedness and
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textual entailment. We use distributional sim-
ilarity features, denotational similarity features,
and alignment features based on shallow syntac-
tic structure.

2.1 Preprocessing
We lemmatize all sentences with the Stanford
CoreNLP system1 and extract syntactic chunks
with the Illinois Chunker (Punyakanok and Roth,
2001). Like Young et al. (2014), we use the Malt
parser (Nivre et al., 2006) to identify 5 sets of con-
stituents for each sentence: subject NPs, verbs,
VPs, direct object NPs, and other NPs.

For stopwords, we use the NLTK English stop-
word list of 127 high-frequency words. We re-
move negation words (no, not, and nor) from the
stopword list since their presence is informative
for this dataset and task.

2.2 Distributional Similarities
After stopword removal and lemmatization, we
compute vectors for tokens that appear at least 10
times in Young et al. (2014)’s image description
corpus. In the vector space, each dimension corre-
sponds to one of the 1000 most frequent lemmas
(contexts). The jth entry of the vector of wi is the
positive normalized pointwise mutual information
(pnPMI) between target wi and context wj :

pnPMI(wi, wj) = max

0,
log
(

P (wi,wj)
P (wi)P (wj)

)
− log (P (wi, wj))


We define P (wi) as the fraction of images with

at least one caption containing wi, and P (wi, wj)
as the fraction of images whose captions contain
both wi and wj . Following recent work that ex-
tends distributional similarities to phrases and sen-
tences (Mitchell and Lapata, 2010; Baroni and
Zamparelli, 2010; Grefenstette and Sadrzadeh,

1http://nlp.stanford.edu/software/
corenlp.shtml
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Features Description # of features

Negation True if either sentence contains explicit negation; False otherwise 1
Word overlap Ratio of overlapping word types to total word types in s1 and s2 1
Denotational constituent similarity Positive normalized PMI of constituent nodes in the denotation

graph
30

Distributional constituent similarity Cosine similarity of vector representations of constituent phrases 30
Alignment Ratio of number of aligned words to length of s1 and s2; max, min,

average unaligned chunk length; number of unaligned chunks
23

Unaligned matching Ratio of number of matched chunks to unaligned chunks; max, min,
average matched chunk similarity; number of crossings in matching

31

Chunk alignment Number of chunks; number of unaligned chunk labels; ratio of un-
aligned chunk labels to number of chunks; number of matched la-
bels; ratio of matched to unmatched chunk labels

17

Synonym Number of matched synonym pairs (w1, w2) 1
Hypernym Number of matched hypernym pairs (w1, w2), number of matched

hypernym pairs (w2, w1)
2

Antonym Number of matched antonym pairs (w1, w2) 1

Table 1: Summary of features.

2011; Socher et al., 2012), we define a phrase vec-
tor p to be the pointwise multiplication product of
the vectors of the words in the phrase:

p = w1 � ...� wn

where � is the multiplication of corresponding
vector components, i.e. pi = ui · vi.

2.3 Denotational Similarities
In Young et al. (2014), we introduce denotational
similarities, which we argue provide a more pre-
cise metric for semantic inferences. We use an
image-caption corpus to define the (visual) de-
notation of a phrase as the set of images it de-
scribes, and construct a denotation graph, i.e. a
subsumption hierarchy (lattice) of phrases paired
with their denotations. For example, the denota-
tion of the node man is the set of images in the
corpus that contain a man, and the denotation of
the node person is rock climbing is the set of im-
ages that depict a person rock climbing. We de-
fine the (symmetric) denotational similarity of two
phrases as the pnPMI between their correspond-
ing sets of images. We associate each constituent
in the SICK dataset with a node in the denotation
graph, but new nodes that are unique to the SICK
data have no quantifiable similarity to other nodes
in the graph.

2.4 Features
Table 1 summarizes our features. Since TE is a
directional task and SR is symmetric, we express
features that depend on sentence order twice: 1)
f1 are the features of s1 and f2 are the features of
s2, 2) f1 are the features of the longer sentence

and f2 are the features of the shorter sentence.
These directional features are specified in the
following feature descriptions.

Negation In this dataset, contradictory sentence
pairs are often marked by explicit negation, e.g. s1
= “The man is stirring the sauce for the chicken”
and s2 = “The man is not stirring the sauce for
the chicken.” A binary feature is set to 1 if either
sentence contains not, no, or nobody, and set to 0
otherwise.

Word Overlap We compute |W1∩W2|
|W1∪W2| on lemma-

tized sentences without stopwords where Wi is
the set of word types that appear in si. Training
a MaxEnt or log-linear model using this feature
achieves better performance than the word overlap
baseline provided by the task organizers.

Denotational Constituent Similarity Denota-
tional similarity captures entailment-like relations
between events. For example, sit and eat lunch
have a high pnPMI, which follows our intuition
that a person who is eating lunch is likely to be
sitting. We use the same denotational constituent
features that Young et al. (2014) use for a textual
similarity task. C are original nodes, Canc are par-
ent and grandparent nodes, and sim(Ca, Cb) is the
maximum pnPMI of any pair of nodes a ∈ Ca,
b ∈ Cb.

C-C features compare constituents of the same
type. These features express how often we expect
corresponding constituents to describe the same
situation. For example, s1 = “Girls are doing
backbends and playing outdoors” and s2 = “Chil-
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dren are doing backbends” have subject nodes
{girl} and {child}. Girls are sometimes de-
scribed as children, so sim(girl, child) = 0.498.
In addition, child is a parent node of girl, so
max(sim(anc(girl), child)) = 1. There are 15
C-C features: sim(C1, C2), max(sim(C1, C

anc
2 ),

sim(Canc
1 , C2)), sim(Canc

1 , Canc
2 ) for each con-

stituent type.

C-all features compare different constituent
types. These features express how often we
expect any pair of constituents to describe the
same scene. For example, s1 = “Two teams are
competing in a football match” and s2 = “A
player is throwing a football” are topically related
sentences. Comparing constituents of different
types like player and compete or player and
football match gives us more information about
the similarity of the sentences. There are 15 C-all
features: the maximum, minimum, and sum of
sim(Ct

1, C2) and sim(C1, C
t
2) for each constituent

type.

Distributional Constituent Similarity Distribu-
tional vector-based similarity may alleviate the
sparsity of the denotation graph. For example,
for subject NP C-C features, we have non-zero
distributional similarity for 87% of instances in
the trial data, but non-zero denotational simi-
larity for only 56% of the same instances. The
football and team nodes may have no common
images in the denotation graph, but we still
have distributional vectors for football and for
team. The 30 distributional similarity features are
the same as the denotational similarity features
except sim(a, b) is the cosine similarity between
constituent phrase vectors.

Alignment Since contradictory and entailing sen-
tences have limited syntactic variation in this
dataset, aligning sentences can help to predict se-
mantic relatedness and textual entailment. We use
the Needleman-Wunsch algorithm (1970) to com-
pute an alignment based on exact word matches
between two lemmatized sentences. The similar-
ity between two lemmas is 1.0 if the words are
identical and 0.0 otherwise, and we do not penal-
ize gaps. This gives us the longest subsequence of
matching lemmas.

The alignment algorithm results in a sentence
pair alignment and 2 unaligned chunk sets defined
by syntactic chunks. For example, s1 = “A brown

and white dog is running through the tall grass”
and s2 = “A brown and white dog is moving
through the wild grass” are mostly aligned, with
the remaining chunks u1 = {[VP run], [NP tall]}
and u2 = {[VP move], [NP wild]}.

There are 23 alignment features. Directional
features per sentence are the number of words
(2 features), the number of aligned words (2
features), and the ratio between those counts (2
features). These features are expressed twice,
once according to the sentence order in the dataset
and once ordered by longer sentence before
shorter sentence, for a total of 12 directional fea-
tures. Non-directional features are the maximum,
minimum, and average unaligned chunk length for
each sentence and for both sentences combined (9
features), and the number of unaligned chunks in
each sentence (2 features).

Unaligned Chunk Matching We want to know
the similarity of the remaining unaligned chunks
because when two sentences have a high overlap,
their differences are very informative. For exam-
ple, in the case that two sentences are identical
except for a single word in each sentence, if we
know that the two words are synonymous, then we
should predict that the two sentences are highly
similar. However, if the two words are antonyms,
the sentences are likely to be contradictory.

We use phrase vector similarity to compute the
most likely matches between unaligned chunks.
We repeat the matching process twice: for sim-
ple matching, any 2 chunks with non-zero phrase
similarity can be matched across sentences, while
for strict matching, chunks can match only if they
have the same type, e.g. NP or VP. This gives us
two sets of features.

For s1 = “A brown and white dog is running
through the tall grass” and s2 = “A brown and
white dog is moving through the wild grass,” the
unaligned chunks are u1 = {[VP run], [NP tall]}
and u2 = {[VP move], [NP wild]}. For strict
matching, the only valid matches are [VP run]–
[VP move] and [NP tall]–[NP wild]. For simple
matching, [NP tall] could also match [VP move]
instead and [VP run] could match [NP wild].

There are a total of 31 unaligned chunk match-
ing features. Directional features per sentence
include the number of unaligned chunks (2
features) and the ratio of the number of matched
chunks to the total number of chunks (2 fea-
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tures). These features are expressed twice, once
according to the sentence order in the dataset and
once ordered by longer sentence before shorter
sentence, for a total of 8 directional features.
Non-directional features per sentence pair include
the maximum, minimum, and average similarity
of the matched chunks (3 features); the maximum,
minimum, and average length of the matched
chunks (3 features); and the number of matched
chunks (1 feature). We extract these 15 features
for both simple matching and strict matching. In
addition, we also count the number of crossings
that result from matching the unaligned chunks in
place (1 feature). This penalizes matched sets that
contain many crossings or long-distance matches.

Chunk Label Alignment and Matching Since
similar sentences in this dataset often have
similar syntax, we compare their chunk label
sequences, e.g. [NP A brown and white dog]
[VP is running] [PP through] [NP the tall grass]
becomes NP VP PP NP. We compute 17 features
based on aligning and matching these chunk
label sequences. Directional features are the total
number of labels in the sequence (2 features),
the number of unaligned labels (2 features), the
ratio of the number of unaligned labels to the
total number of labels (2 features), and the ratio
of the number of matched labels to the number of
unaligned labels (2 features). These features are
expressed twice, once according to the sentence
order in the dataset and once ordered by longer
sentence before shorter sentence, for a total of 16
directional features. We also count the number of
matched labels for the sentence pair (1 feature).

Synonyms and Hypernyms We count the num-
ber of synonyms and hypernyms in the matched
chunks for each sentence pair. Synonyms are
words that share a WordNet synset, and hyper-
nyms are words that have a hypernym relation
in WordNet. There are two hypernym features
because hypernymy is directional: num hyp1 is
the number of words in s1 that have a hypernym
in s2, while num hyp2 is the number of words
in s2 that have a hypernym in s1. For example,
s1 = “A woman is cutting a lemon” and s2 = “A
woman is cutting a fruit” have num hyp1 = 1.
For synonyms, num syn is the number of word
pairs in s1 and s2 that are synonyms. For example,
s1 = “A brown and white dog is running through

the tall grass” and s2 = “A brown and white
dog is moving through the wild grass” have
num syn = 1.

Antonyms When we match unaligned chunks, the
highest similarity pair are sometimes antonyms,
e.g. s1 = “Some people are on a crowded street”
and s2 = “Some people are on an empty street.”
In other cases, they are terms that we think of as
mutually exclusive, e.g. man and woman. In both
cases, the sentences are unlikely to be in an en-
tailing relationship. Since resources like WordNet
will fail to identify the mutually exclusive pairs
that are common in this dataset, e.g. bike and car
or piano and guitar, we use the training data to
build a list of these pairs. We identify the matched
chunks that occur in contradictory or neutral sen-
tences but not entailed sentences. We exclude syn-
onyms and hypernyms and apply a frequency filter
of n = 2. Commonly matched chunks in neutral
or contradictory sentences include sit–stand, boy–
girl, and cat–dog. These are terms with differ-
ent and often mutually exclusive meanings. Com-
monly matched chunks in entailed sentences in-
clude man–person, and lady–woman. These are
terms that could easily be used to describe the
same situation. However, cut–slice is a common
pair in both neutral and entailed sentences and we
do not want to count it as an antonym pair. There-
fore, we consider frequent pairs that occur in con-
tradictory or neutral but not entailed sentences to
be antonyms.

The feature num ant is the number of matched
antonyms in a sentence pair. We identify an
antonym if ca and cb are on the antonym list or
occur in one of these patterns: X–not X, X–no X,
X–no head-noun(X) (e.g. blue hat–no hat), X–
no hypernym(X) (e.g. poodle–no dog), X–no syn-
onym(X) (e.g. kid–no child). For each antonym
pair, we set the similarity score of that match to
0.0.

For example, num ant = 1 for s1 = “A small
white dog is running across a lawn” and s2 = “A
big white dog is running across a lawn.” In addi-
tion, num ant = 1 for s1 = “A woman is leaning
on the ledge of a balcony” and s2 = “A man is
leaning on the ledge of a balcony.”

2.5 Models

For the SR task, we implement a log-linear regres-
sion model using Weka (Hall et al., 2009). Specif-
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Accuracy Pearson ρ

Chance baseline 33.3 –
Majority baseline 56.7 –
Probability baseline 41.8 –
Overlap baseline 56.2 0.627
Submitted system 84.5 0.799

Table 2: TE and SR results on test data.

Model Accuracy Pearson ρ

Overlap baseline 56.8 0.646
Negation 61.0 0.093
Word overlap 65.0 0.694
(+Vector composition) 66.4 0.697
+Denotational similarity 74.4 0.751
+Distributional similarity 71.8 0.756
+Den +Dist 77.0 0.782
+Alignment 70.4 0.697
+Unaligned chunk matching 75.8 0.719
+Align +Match 75.2 0.728
+Synonyms 65.2 0.696
+Hypernyms 66.8 0.716
+Antonyms 71.0 0.704
All features 84.2 0.802

Table 3: TE and SR results on trial data.

ically, under Weka’s default settings, we train a
ridge regression model with regularization param-
eter α = 1×10−8. For the TE task, we use a Max-
Ent model implemented with MALLET (McCal-
lum, 2002). The MaxEnt model is optimized with
L-BFGS, using the default settings. Both models
use the same set of features.

3 Results

Our submitted system was trained on the full train-
ing and trial data (5000 sentences). Table 2 shows
our results on the test data. We substantially out-
perform all baselines.

3.1 Feature Ablation

We train models on the training data and test on
the trial data. Models marked with + include our
word overlap feature. We also examine a single
compositional feature (vector composition): the
cosine similarity of two sentence vectors. A sen-
tence vector is the pointwise multiplication prod-
uct of component word vectors.

Table 3 compares performance on both tasks.
For TE, unaligned chunk matching outperforms
other features. Denotational constituent similarity
also does well. For SR, distributional and deno-
tational features have the highest correlation with
gold scores. Combining them further improves
performance.

% Accuracy
Model N E C

Overlap baseline 77.3 44.8 0.0
Negation 85.4 0.0 86.4
Word overlap 82.9 63.8 0.0
(+Vector composition) 84.7 64.5 0.0
+Denotational similarity 83.6 67.3 52.7
+Distributional similarity 86.5 60.4 37.8
+Den +Dist 85.4 68.7 60.8
+Alignment 87.9 50.6 41.8
+Unaligned chunk matching 90.4 66.6 37.8
+Align +Match 88.6 61.8 50.0
+Synonyms 82.2 65.2 0.0
+Hypernyms 84.0 68.0 0.0
+Antonyms 83.6 82.6 0.0
All features 86.5 83.3 77.0

Table 4: TE accuracy on trial data by entailment
type (Neutral, Entailment, Contradiction).

Table 4 shows TE accuracy of each model by
entailment label. On contradictions, the negation
model has 86.0% accuracy while our final system
has only 77.0% accuracy. However, the negation
model cannot identify entailment. Its performance
is due to the high proportion of contradictions that
can be identified by explicit negation.

We expected antonyms to improve classifica-
tion of contradictions, but the antonym feature
actually has the highest accuracy of any feature
on entailed sentences. The dataset contains few
contradictions, and most involve explicit negation,
not antonyms. The antonym feature indicates that
when two sentences have high word overlap and
no antonyms, one is likely to entail the other. Neu-
tral sentences often contain word pairs that are
mutually exclusive, so the antonym feature distin-
guishes between neutral and entailed sentences.

4 Conclusion

Our system combines multiple similarity metrics
to predict semantic relatedness and textual entail-
ment. A binary negation feature and similarity
comparisons based on chunking do very well, as
do denotational constituent similarity features. In
the future, we would like to focus on multiword
paraphrases and prepositional phrases, which our
current system has trouble analyzing.
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