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Abstract

In this paper, we describe our sub-
mission to the Shared Task #1. We
tried to follow the underlying idea of
the task, that is, evaluating the gap
of full-fledged recognizing textual en-
tailment systems with respect to com-
positional distributional semantic mod-
els (CDSMs) applied to this task. We
thus submitted two runs: 1) a sys-
tem obtained with a machine learning
approach based on the feature spaces
of rules with variables and 2) a sys-
tem completely based on a CDSM that
mixes structural and syntactic infor-
mation by using distributed tree ker-
nels. Our analysis shows that, under
the same conditions, the fully CDSM
system is still far from being competi-
tive with more complex methods.

1 Introduction

Recognizing Textual Entailment is a largely
explored problem (Dagan et al., 2013). Past
challenges (Dagan et al., 2006; Bar-Haim et
al., 2006; Giampiccolo et al., 2007) explored
methods and models applied in complex and
natural texts. In this context, machine learn-
ing solutions show interesting results. The
Shared Task #1 of SemEval instead wants to
explore systems in a more controlled textual
environment where the phenomena to model
are clearer. The aim of the Shared Task is to
study how RTE systems built upon composi-
tional distributional semantic models behave
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with respect to the above tradition. We tried
to capture this underlying idea of the task.

In this paper, we describe our submission
to the Shared Task #1. We tried to fol-
low the underlying idea of the task, that is,
evaluating the gap of full-fledged recognizing
textual entailment systems with respect to
compositional distributional semantic models
(CDSMs) applied to this task. We thus sub-
mitted two runs: 1) a system obtained with a
machine learning approach based on the fea-
ture spaces of rules with variables (Zanzotto
et al., 2009) and 2) a system completely based
on a CDSM that mixes structural and syntac-
tic information by using distributed tree ker-
nels (Zanzotto and Dell’ Arciprete, 2012). Our
analysis shows that, under the same condi-
tions, the fully CDSM system is still far from
being competitive with more complete meth-
ods.

The rest of the paper is organized as follows.
Section 2 describes the full-fledged recognizing
textual entailment system that is used for com-
parison. Section 3 introduces a novel composi-
tional distributional semantic model, namely,
the distributed smoothed tree kernels, and the
way this model is applied to the task of RTE.
Section 4 describes the results in the challenge
and it draws some preliminary conclusions.

2 A Standard full-fledged Machine
Learning Approach for RTE

For now on, the task of recognizing textual en-
tailment (RTE) is defined as the task to decide
if a pair p = (a, b) like:

(“Two children are lying in the snow and are
making snow angels”, “T'wo angels are
making snow on the lying children”)

is in entailment, in contradiction, or neutral.
As in the tradition of applied machine learn-
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ing models, the task is framed as a multi-
classification problem. The difficulty is to de-
termine the best feature space on which to
train the classifier.

A full-fledged RTE systems based on ma-
chine learning that has to deal with natural
occurring text is generally based on:

e some within-pair features that model the
similarity between the sentence a and the
sentence b

e some features representing more complex
information of the pair (a,b) such as rules
with variables that fire (Zanzotto and
Moschitti, 2006)

In the following, we describe the within-pair
feature and the syntactic rules with variable
features used in the full-fledged RTE system.

As the second space of features is generally
huge, the full feature space is generally used in
kernel machines where the final kernel between
two instances p; = (a1,b1) and pa = (ag, by) is:

K(p1,p2) = FR(p1,p2) +
+ (WTS(ay,b1) - WTS(ag,b2) + 1)2

where F'R counts how many rules are in com-
mon between p; and py and WT'S computes a
lexical similarity between a and b. In the fol-
lowing sections we describe the nature of WT'S
and of FR

2.1 Weighted Token Similarity (WTS)

This similarity model was first defined bt Cor-
ley and Mihalcea (2005) and since then has
been used by many RTE systems. The model
extends a classical bag-of-word model to a
Weighted-Bag-of-Word (WBOW) by measuring
similarity between the two sentences of the
pair at the semantic level, instead of the lexical
level.

For example, consider the pair: “Os-
cars forgot Farrah Fawcett”, “Farrah Fawcett
snubbed at Academy Awards”. This pair is
redundant, and, hence, should be assigned
a very high similarity. Yet, a bag-of-word
model would assign a low score, since many
words are not shared across the two sen-
tences. WBOW fixes this problem by match-
ing ‘Oscar’-‘Academy Awards’ and ‘forgot’-
‘snubbed’ at the semantic level. To provide
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these matches, WBOW relies on specific word
similarity measures over WordNet (Miller,
1995), that allow synonymy and hyperonymy
matches: in our experiments we specifically
use Jiang& Conrath similarity (Jiang and Con-
rath, 1997).

2.2 Rules with Variables as Features

The above model alone is not sufficient to
capture all interesting entailment features as
the relation of entailment is not only related
to the notion of similarity between a and b.
In the tradition of RTE, an interesting feature
space is the one where each feature represents
a rule with variables, i.e. a first order rule
that is activated by the pairs if the variables
are unified. This feature space has been
introduced in (Zanzotto and Moschitti, 2006)
and shown to improve over the one above.
Each feature (fri, fro) is a pair of syntactic
tree fragments augmented with variables.
The feature is active for a pair (¢1,t2) if the
syntactic interpretations of ¢; and to can
be unified with < fry, fro >. For example,
consider the following feature:

S S
NPX] VP NPX] VP
< TN ) N
VI‘BP NPY] VBP NPY]
bought Ou‘)ns

This feature is active for the pair (“GM bought
Opel” ,“GM owns Opel”), with the variable
unification [X| = “GM” and [Y]| = “Opel”. On
the contrary, this feature is not active for the
pair (“GM bought Opel” ,“Opel owns GM”) as
there is no possibility of unifying the two vari-
ables.

FR(p1,p2) is a kernel function that counts
the number of common rules with variables
between p; and po. Efficient algorithms for
the computation of the related kernel func-
tions can be found in (Moschitti and Zanzotto,
2007; Zanzotto and Dell’ Arciprete, 2009; Zan-
zotto et al., 2011).



S:booked::v  VP:booked::v NP:w
v X ' PR

I

P

e:p
P

S:booked::v

, mP
Pﬁp

VP:booked::v

P }

g e

boo‘ked DT NN

Figure 1: Subtrees of the tree ¢ in Figure 2 (a non-exhaustive list.)

3 Distributed Smoothed Tree
Kernel: a Compositional
Distributional Semantic Model
for RTE

The above full-fledged RTE system, although
it may use distributional semantics, is not a
model that applies a compositional distribu-
tional semantic model as it does not explic-
itly transform sentences in vectors, matrices,
or tensors that represent their meaning.

We here propose a model that can be con-
sidered a compositional distributional seman-
tic model as it transforms sentences into ma-
trices that are then used by the learner as fea-
Our model is called Distributed
Smoothed Tree Kernel (Ferrone and Zanzotto,
2014) as it mixes the distributed trees (Zan-
zotto and Dell’Arciprete, 2012) representing
syntactic information with distributional se-
mantic vectors representing semantic informa-
tion. The computation of the final matrix for
each sentence is done compositionally.

ture vectors.
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Figure 2: A lexicalized tree.
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3.1 Notation

Before describing the distributed smoothed
trees (DST) we introduce a formal way to de-
note constituency-based lexicalized parse trees,
as DSTs exploit this kind of data structures.
Lexicalized trees are denoted with the letter ¢
and N (t) denotes the set of non terminal nodes
of tree t. Each non-terminal node n € N(t)
has a label [, composed of two parts [, =
(Sn,wy): Sp is the syntactic label, while wy, is
the semantic headword of the tree headed by
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n, along with its part-of-speech tag. Termi-
nal nodes of trees are treated differently, these
nodes represent only words w, without any
additional information, and their labels thus
only consist of the word itself (see Fig. 2).
The structure of a DST is represented as fol-
lows: Given a tree t, h(¢) is its root node and
s(t) is the tree formed from ¢ but considering
only the syntactic structure (that is, only the
sp, part of the labels), ¢;(n) denotes i-th child
of a node n. As usual for constituency-based
parse trees, pre-terminal nodes are nodes that
have a single terminal node as child.

Finally, we use wy, € R¥ to denote the distri-
butional vector for word w,,, whereas T repre-
sents the matrix of a tree t encoding structure
and distributional meaning.

3.2 The Method in a Glance

We describe here the approach in a few sen-
tences. In line with tree kernels over struc-
tures (Collins and Duffy, 2002), we introduce
the set S(t) of the subtrees ¢; of a given lexi-
calized tree t. A subtree ¢; is in the set S(t) if
s(t;) is a subtree of s(t) and, if n is a node in
t;, all the siblings of n in ¢ are in t;. For each
node of t; we only consider its syntactic label
Sn, except for the head h(t;) for which we also
consider its semantic component w, (see Fig.
1). The functions DSTs we define compute the
following:

DST(t)=T= Y T,
t;€S(t)

where T is the matrix associated to each sub-
tree t;. The similarity between two text frag-
ments a and b represented as lexicalized trees
t* and t® can be computed using the Frobenius
product between the two matrices T® and T?,
that is:

<Tava>F_ Z <T?’T?>F

teeS(te)
b b
es(t)

(1)



We want to obtain that the product (T¢, T;’-> F
approximates the dot product between the
distributional vectors of the head words

(T, T?}F ~ (h(t%), h(t?))) whenever the syn-
tactic structure of the subtrees is the same
(that is s(ty) = s(t?)), and (TY, T?>F ~ 0 oth-
erwise. This property is expressed as:

N —

(T7, T5)p ~ o(s(t),s(t3)) - (h(t), h(t5)) (2)

To obtain the above property, we define

—

— T
T = s(ti)wn(,)

where s(t;) are distributed tree fragment
(Zanzotto and Dell’Arciprete, 2012) for the
subtree ¢t and wh_(;i) is the distributional
vector of the head of the subtree t. Dis-
tributed tree fragments have the property
that s(t;)s(t;) ~ d(t;,t;). Thus, given the
important property of the outer product
that applies in the Frobenius product:
T LT e

(aw ,bv Yp={(a,b) (w,v). we have that

Equation 2 is satisfied as:

— —

(T, Tj)p = (s(ti),s(t;)) - (Wn(z,)» Whet;))
8(s(t:),s(£5))  (Wneey)» Whez,))

It is possible to show that the overall com-
positional distributional model DST'(t) can be
obtained with a recursive algorithm that ex-
ploit vectors of the nodes of the tree.

The compositional distributional model is
then used in the same learning machine used
for the traditional RTE system with the fol-
lowing kernel function:

~
~

K(p1,p2) =

Model Accuracy (3-ways)
DST 69.42
full-fledged RTE System 75.66
Max 84.57
Min 48.73
Average 75.35

Table 1: Accuracies of the two systems on the
test set, together with the maximum, mini-
mum and average score for the challenge.

(en.wikipedia.org) and the British Na-
tional Corpus (www.natcorp.ox.ac.uk), for a
total of about 2.8 billion words. The raw co-
occurrences count vectors were transformed
into positive Pointwise Mutual Information
scores and reduced to 300 dimensions by
Singular Value Decomposition. This setup
was picked without tuning, as we found it
effective in previous, unrelated experiments.
We parsed the sentence with the Stanford
Parser (Klein and Manning, 2003) and ex-
tracted the heads for use in the lexicalized
trees with Collins’ rules (Collins, 2003).
Table 1 reports our results on the textual en-
tailment classification task, together with the
maximum, minimum and average score for the
challenge. The first observation is that the
full-fledged RTE system is still definitely bet-
ter than our CDSM system. We believe that
the main reason is that the DST cannot en-
code variables which is an important aspect
to capture when dealing with textual entail-
ment recognition. This is particularly true
for this dataset as it focuses on word order-
ing and on specific and recurrent entailment
rules. Our full-fledged system scored among
the first 10 systems, slightly above the over-
all average score, but our pure CDSM system
is instead ranked within the last 3. We think

(DST(a1), DST(az2)) + (DST(b1), DST(b2)) + that a more in-depth comparison with other

+(WTS(ar,b1) - WTS(az,bs) + 1)

4 Results and Conclusions

For the submission we used the java ver-
sion of LIBSVM (Chang and Lin, 2011).
Distributional vectors are derived with
DISSECT (Dinu et al., 2013)
corpus obtained by the concatenation of
ukWaC  (wacky.sslmit.unibo.it), a mid-
2009 dump of the English Wikipedia

from a
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fully CDSM systems will give us a better in-
sight on our model and will also assess more
realistically the quality of our system.
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