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Abstract

This paper describes the systems deployed
by the ALPAGE team to participate to the
SemEval-2014 Task on Broad-Coverage
Semantic Dependency Parsing. We de-
veloped two transition-based dependency
parsers with extended sets of actions to
handle non-planar acyclic graphs. For the
open track, we worked over two orthog-
onal axes — lexical and syntactic — in or-
der to provide our models with lexical and
syntactic features such as word clusters,
lemmas and tree fragments of different

types.

1 Introduction

In recent years, we have seen the emergence
of semantic parsing, relying on various tech-
niques ranging from graph grammars (Chiang et
al., 2013) to transitions-based dependency parsers
(Sagae and Tsujii, 2008). Assuming that obtain-
ing predicate argument structures is a necessary
goal to move from syntax to accurate surface se-
mantics, the question of the representation of such
structures arises. Regardless of the annotation
scheme that should be used, one of the main is-
sues of semantic representation is the construction
of graph structures, that are inherently harder to
generate than the classical tree structures.

In that aspect, the shared task’s proposal (Oepen
et al., 2014), to evaluate different syntactic-
semantic schemes (Ivanova et al., 2012; Hajic et
al., 2006; Miyao and Tsujii, 2004) could not ar-
rive at a more timely moment when state-of-the-art
surface syntactic parsers regularly reach, or cross,
a 90% labeled dependency recovery plateau for a
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wide range of languages (Nivre et al., 2007a; Sed-
dah et al., 2013).

The two systems we present both extend
transition-based parsers in order to be able to gen-
erate acyclic dependency graphs. The first one
follows the standard greedy search mechanism of
(Nivre et al., 2007b), while the second one fol-
lows a slightly more global search strategy (Huang
and Sagae, 2010; Goldberg et al., 2013) by rely-
ing on dynamic programming techniques. In addi-
tion to building graphs directly, the main original-
ity of our work lies in the use of different kinds of
syntactic features, showing that using syntax for
pure deep semantic parsing improves global per-
formance by more than two points.

Although not state-of-the-art, our systems per-
form very honorably compared with other single
systems in this shared task and pave quite an in-
teresting way for further work. In the remainder
of this paper, we present the parsers and their ex-
tensions for building graphs; we then present our
syntactic features and discuss our results.

2 Systems Description

Shift-reduce transition-based parsers essentially
rely on configurations formed of a stack and a
buffer, with stack transitions used to go from a
configuration to the next one, until reaching a fi-
nal configuration. Following Kiibler et al. (2009),
we define a configuration by ¢ = (o, 3, A) where
o denotes a stack of words w;, (8 a buffer of
words, and A a set of dependency arcs of the form
(wj,r,w;), with w; the head, w; the dependent,
and r a label in some set R.

However, despite their overall similarities,
transition-based systems may differ on many as-
pects, such as the exact definition of the configura-
tions, the set of transitions extracted from the con-
figurations, the way the search space is explored
(at parsing and training time), the set of features,
the way the transition weights are learned and ap-
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(U Wi ‘/37 ) F (U Wi, ﬂv A) (Shlft) BOTH
(olwjlws, B, A)  F  (o|ws, B, AU (ws,r,w;)) (left-reduce) S&T PARSER
(olwjlws, B,A) F  (olwy, B, AU (wj,r,w;)) (right-reduce)  S&T PARSER
(olwjlws, B,A) =  (o|lwjlwi, B, AU (wi, r,w;)) (left-attach) BOTH
(o|lwjlws, B,A) = (o|lw;,w:|B, AU (wj,r,w;) (right-attach) BOTH
(olwi, B, A) o (0,8,A (pop0) BOTH
(o|lwjlw;, B,A) F  (o|ws,B,A) (popl) DYALOG-SR
(olwjlwi, B,A)  F  (o|lwi|w;, B, A) (swap) DYALOG-SR

Figure 1: An extended set of transitions for building dependency graphs.

plied, etc.

For various reasons, we started our experiments
with two rather different transition-based parsers,
which have finally converged on several aspects.
In particular, the main convergence concerns the
set of transitions needed to parse the three pro-
posed annotation schemes. To be able to attach
zero, one, or more heads to a word, it is necessary
to clearly dissociate the addition of a dependency
from the reduction of a word (i.e. its removal from
the stack). Following Sagae and Tsujii (2008), as
shown in Figure 1, beside the usual shift and re-
duce transitions of the arc-standard strategy, we
introduced the new left and right attach actions for
adding new dependencies (while keeping the de-
pendent on the stack) and two reduce pop0 and
pop1l actions to remove a word from the stack af-
ter attachement of its dependents. All transitions
adding an edge should also satisfy the condition
that the new edge does not create a cycle or mul-
tiple edges between the same pair of nodes. It is
worth noting that the pop actions may also be used
to remove words with no heads.

2.1 Sagae & Tsujii’s DAG Parser

Our first parsing system is a partial rewrite, with
several extensions, of the Sagae and Tsujii (2008)
DAG parser (henceforth S&T PARSER). We mod-
ified it to handle dependency graphs, in particu-
lar non-governed words using popO transitions.
This new transition removes the topmost stack el-
ement when all its dependents have been attached
(through attach or reduce transitions). Thus, we
can handle partially connected graphs, since a
word can be discarded when it has no incoming
arc.

We used two different learning algorithms:
(i) the averaged perceptron because of its good
balance between training time and performance
(Daume, 2006), (ii) the logistic regression model
(maximum entropy (Ratnaparkhi, 1997)). For the
latter, we used the truncated gradient optimiza-
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tion (Langford et al., 2009), implemented in Clas-
sias (Okazaki, 2009), in order to estimate the pa-
rameters. These algorithms have been used inter-
changeably to test their performance in terms of F-
score. But the difference was negligeable in gen-
eral.

2.2 DYALOG-SR

Our second parsing system is DYALOG-SR
(Villemonte De La Clergerie, 2013), which has
been developed to participate to the SPMRL’ 13
shared task. Coded on top of tabular logic
programming system DYALOG, it implements
a transition-based parser relying on dynamic
programming techniques, beams, and an aver-
aged structured perceptron, following ideas from
(Huang and Sagae, 2010; Goldberg et al., 2013).

It was initially designed to follow an arc-
standard parsing strategy, relying on shift and
left/right reduce transitions. To deal with depen-
dency graphs and non governed words, we first
added the two attach transitions and the pop0
transition. But because there exist some overlap
between the reduce and attach transitions leading
to some spurious ambiguities, we finally decided
to remove the left/right reduce transitions and to
complete with the popl transition. In order to
handle some cases of non-projectivty with mini-
mal modifications of the system, we also added
a swap transition. The parsing strategy is now
closer to the arc-eager one, with an oracle sug-
gesting to attach as soon as possible.

2.3 Tree Approximations

In order to stack several dependency parsers, we
needed to transform our graphs into trees. We re-
port here the algorithms we used.

The first one uses a simple strategy. For nodes
with multiple incoming edges, we keep the longest
incoming edge. Singleton nodes (with no head)
are attached with a _void_-labeled edge (by
decreasing priority) to the immediately adjacent



Word,, Lemma,, POS,,
leftPOS,, rightPOS | leftLabel,,
rightLabel | . Word,, Lemma,,
POS,, leftPOS,, rightPOS
leftLabel,, i ghtLabelU2 Word,,
POS,, Wordg, Lemmag,
POSg, Wordg, Lemmag,
POSg2 POSQ3 a d12 dlu

Table 1: Baseline features for S&T PARSER.

node NV, or the virtual root node (token 0). This
strategy already improves over the baseline, pro-
vided by the task organisers, on the PCEDT by 5
points.

The second algorithm tries to preserve more
edges: when it is possible, the deletion of a re-
entrant edge is replaced by reversing its direction
and changing its label [ into <. We do this for
nodes with no incoming edges by reversing the
longest edge only if this action does not create cy-
cles. The number of labels increases, but many
more edges are kept, leading to better results on
DM and PAS corpora.

3 Feature Engineering

3.1 Closed Track

For S&T PARSER we define Wordg, (resp.
Lemmag, and POSg,) as the word (resp. lemma
and part-of-speech) at position 7 in the queue. The
same goes for o;, which is the position ¢ in the
stack. Let d;; be the distance between Word,,
and Wordgj. We also define d;} o the distance be-
tween Wordg, and Wordc,j. In addition, we define
leftPOS,; (resp. leftLabel,;,) the part-of-speech
(resp. the label if any) of the word immediately
at the left handside of o;, and the same goes for
rightPOS,, (resp. rightLabel ). Finally, a is the
previous predicted action by the parser. Table 1
reports our baseline features.

For DYALOG-SR we have the following lexi-
cal features 1ex, lemma, cat, and morphosyn-
tactic mstag. They apply to next unread word
(I, say lemmal), the three next lookahead
words (xI2 to «I4), and (when present) to the
3 stack elements (*0 to *x2), their two leftmost
and rightmost children (before b[01]%[012]
and after a[01]1+[012]). We have dependency
features such as the labels of the two leftmost
and rightmost edges ([ab] [01]1label [012]),
the left and right valency (number of depen-
dency, [ab]lv[012]) and domains (set of de-
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pendency labels, [ab]d[012]). Finally, we
have 3 (discretized) distance features between the
next word and the stack elements (delta[01])
and between the two topmost stack elements
(delta01). Most feature values are atomic (ei-
ther numerical or symbolic), but they can also be
(recursively) a list of values, for instance for the
mstag and domain features. For dealing with
graphs, features were added about the incoming
edges to the 3 topmost stack elements, similar to
valency (ngov[012]) and domain (gov[012]).
For the PCEDT scheme, because of the high num-
ber of dependency labels, the 30 most unfrequent
ones were replaced by a generic label when used
as feature value.

Besides, for the PCEDT and DM corpora, static
and dynamic guiding features have been tried
for DYALOG-SR, provided by MATE (Bohnet,
2010) (trained on versions of these corpora pro-
jected to trees, using a 10-fold cross valida-
tion). The two static features mate_label and
mate_distance are attached to each token h,
indicating the label and the relative distance to its
governor d (if any). At runtime, dynamic features
are also added relative to the current configuration:
if a semantic dependency (h,[,d) has been pre-
dicted by MATE, and the topmost 2 stack elements
are either (h,d) or (d,h), a feature suggesting a
left or right attachment for [ is added.

We did the same for S&T PARSER, except that
we used a simple but efficient hack: instead of
keeping the labels predicted by our parser, we re-
placed them by MATE predictions whenever it was
possible.

3.2 Open Track

For this track, we combined the previously de-
scribed features (but the MATE-related ones) with
various lexical and syntactic features, our intu-
ition being that syntax and semantic are inter-
dependent, and that syntactic features should
therefore help semantic parsing. In particular, we
have considered the following bits of information.

Unsupervized Brown clusters To reduce lexi-
cal sparsity, we extracted 1,000 clusters from the
BNC (Leech, 1992) preprocessed following Wag-
ner et al. (2007). We extended them with capi-
talization, digit features and 3 letters suffix signa-
tures, leading to a vocabulary size reduced by half.

Constituent tree fragments They were part of
the companion data provided by the organizers.



They consist of fragments of the syntactic trees
and can be used either as enhanced parts of speech
or as features.

Spinal elementary trees A full set of parses was
reconstructed from the tree fragments. Then we
extracted a spine grammar (Seddah, 2010), us-
ing the head percolation table of the Bikel (2002)
parser, slightly modified to avoid determiners to be
marked as head in some configurations.

Predicted MATE dependencies Also provided
in the companion data, they consist in the parses
built by the MATE parsers, trained on the Stanford
dependency version of the PTB. We combined the
labels with a distance § = t — h where t is the
token number and / the head number.

Constituent head paths Inspired by Bjorkelund
et al. (2013), we used the MATE dependencies to
extract the shortest path between a token and its
lexical head and included the path length (in terms
of traversed nodes) as feature.

Tree frag. MATE labels+5 Spines trees Head Paths
Train 648 1305 637 27,670
Dev 272 742 265 3,320
Test 273 731 268 2,389

Table 2: Syntactic features statistics.

4 Results and Discussion

We present here the results on section 21 (test set)!
for both systems. We report in Table 3, the differ-
ent runs we submitted for the final evaluation of
the shared task. We also report improvements be-
tween the two tracks.

Both systems show relatively close F-measures,
with correct results on every corpus. If we com-
pare the results more precisely, we observe that in
general, DYALOG-SR tends to behave better for
the unlabeled metrics. Its main weakness is on
MRS scheme, for both tracks.>

"Dev  set  results available  online at
http://goo.gl/w3XcpW.

>The main and still unexplained problem of DYALOG-
SR was that using larger beams has no impact, and often a
negative one, when using the attach and pop transitions. Ex-
cept for PAS and PCEDT where a beam of size 4 worked
best for the open track, all other results were obtained for
beams of size 1. This situation is in total contradiction with
the large impact of beam previously observed for the arc stan-
dard strategy during the SPMRL’13 shared task and during
experiments led on the French TreeBank (Abeillé et al., 2003)
(FTB). Late experiments on the FTB using the attach and

pop actions (but delaying attachments as long as possible) has

are

100

On the other hand, it is worth noting that syn-
tactic features greatly improve semantic parsing.
In fact, we report in Figure 2(a) the improvement
of the five most frequent labels and, in Figure 2(b),
the five best improved labels with a frequency over
0.5% in the training set, which represent 95% of
the edges in the DM Corpus. As we can see, syn-
tactic information allow the systems to perform
better on coordination structures and to reduce am-
biguity between modifiers and verbal arguments
(such as the ARG3 label).

We observed the same behaviour on the PAS
corpus, which contains also predicate-argument
structures. For PCEDT, the results show that syn-
tactic features give only small improvements, but
the corpus is harder because of a large set of labels
and is closer to syntactic structures than the two
others.

Of course, we only scratched the surface with
our experiments and we plan to further investigate
the impact of syntactic information during seman-
tic parsing. We especially plan to explore the deep
parsing of French, thanks to the recent release of
the Deep Sequoia Treebank (Candito et al., 2014).

5 Conclusion

In this paper, we presented our results on the task
8 of the SemEval-2014 Task on Broad-Coverage
Semantic Dependency Parsing. Even though the
results do not reach state-of-the-art, they compare
favorably with other single systems and show that
syntactic features can be efficiently used for se-
mantic parsing.

In future work, we will continue to investigate
this idea, by combining with more complex sys-
tems and more efficient machine learning tech-
niques, we are convinced that we can come closer
to state of the art results. and that syntax is the key
for better semantic parsing.
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