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Abstract

Our system combines text similarity measures
with a textual entailment system. In the main
task, we focused on the influence of lexical-
ized versus unlexicalized features, and how
they affect performance on unseen questions
and domains. We also participated in the pi-
lot partial entailment task, where our system
significantly outperforms a strong baseline.

1 Introduction

The Joint Student Response Analysis and 8th Rec-
ognizing Textual Entailment Challenge (Dzikovska
et al., 2013) brings together two important dimen-
sions of Natural Language Processing: real-world
applications and semantic inference technologies.
The challenge focuses on the domain of middle-
school quizzes, and attempts to emulate the metic-
ulous marking process that teachers do on a daily
basis. Given a question, a reference answer, and a
student’s answer, the task is to determine whether
the student answered correctly. While this is not
a new task in itself, the challenge focuses on em-
ploying textual entailment technologies as the back-
bone of this educational application. As a conse-
quence, we formalize the question “Did the student
answer correctly?” as “Can the reference answer be
inferred from the student’s answer?”. This question
can (hopefully) be answered by a textual entailment
system (Dagan et al., 2009).

The challenge contains two tasks: In the main
task, the system must analyze each answer as a
whole. There are three settings, where each one de-
fines “correct” in a different resolution. The highest-
resolution setting defines five different classes or

“correctness values”: correct, partially correct, con-
tradictory, irrelevant, non-domain. In the pilot task,
critical elements of the answer need to be analyzed
separately. Each such element is called a facet, and
is defined as a pair of words that are critical in an-
swering the question. As there is a substantial dif-
ference between the two tasks, we designed sibling
architectures for each task, and divide the main part
of the paper accordingly.

Our goal is to provide a robust architecture for stu-
dent response analysis, that can generalize and per-
form well in multiple domains. Moreover, we are
interested in evaluating how well general-purpose
technologies will perform in this setting. We there-
fore approach the challenge by combining two such
technologies: DKPro Similarity –an extensive suite
of text similarity measures– that has been success-
fully applied in other settings like the SemEval 2012
task on semantic textual similarity (Bär et al., 2012a)
or reuse detection (Bär et al., 2012b).

BIUTEE, the Bar-Ilan University Textual Entail-
ment Engine (Stern and Dagan, 2011), which has
shown state-of-the-art performance on recognizing
textual entailment challenges. Our systems use both
technologies to extract features, and combine them
in a supervised model. Indeed, this approach works
relatively well (with respect to other entries in the
challenge), especially in unseen domains.

2 Background

2.1 Text Similarity

Text similarity is a bidirectional, continuous func-
tion which operates on pairs of texts of any length
and returns a numeric score of how similar one text
is to the other. In previous work (Mihalcea et al.,
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2006; Gabrilovich and Markovitch, 2007; Landauer
et al., 1998), only a single text similarity measure
has typically been applied to text pairs. However,
as recent work (Bär et al., 2012a; Bär et al., 2012b)
has shown, text similarity computation can be much
improved when a variety of measures are combined.

In recent years, UKP lab at TU Darmstadt has de-
veloped DKPro Similarity1, an open source toolkit
for analyzing text similarity. It is part of the
DKPro framework for natural language processing
(Gurevych et al., 2007). DKPro Similarity excels
at the tasks of measuring semantic textual simi-
larity (STS) and detecting text reuse (DTR), hav-
ing achieved the best performance in previous chal-
lenges (Bär et al., 2012a; Bär et al., 2012b).

2.2 Textual Entailment

The textual entailment paradigm is a generic frame-
work for applied semantic inference (Dagan et al.,
2009). The most prevalent task of textual entailment
is to recognize whether the meaning of a target nat-
ural language statement (H for hypothesis) can be
inferred from another piece of text (T for text). Ap-
parently, this core task underlies semantic inference
in many text applications. The task of analyzing stu-
dent responses is one such example. By assigning
the student’s answer as T and the reference answer
as H , we are basically asking whether one can in-
fer the correct (reference) answer from the student’s
response. In recent years, Bar-Ilan University has
developed BIUTEE (Stern and Dagan, 2011), an ex-
tensive textual entailment recognition engine. BI-
UTEE tries to convert T (represented as a depen-
dency tree) to H . It does so by applying a series of
knowledge-based transformations, such as synonym
substitution, active-passive conversion, and more.
BIUTEE is publicly available as open source.2

3 Main Task

In this section, we explain how we approached the
main task, in which the system needs to analyze each
answer as a whole. After describing our system’s ar-
chitecture, we explain how we selected training data
for the different scenarios in the main task. We then

1code.google.com/p/dkpro-similarity-asl
2cs.biu.ac.il/˜nlp/downloads/biutee

provide the details for each submitted run, and fi-
nally, our empirical results.

3.1 System Description

We build a system based on the Apache UIMA
framework (Ferrucci and Lally, 2004) and DKPro
Lab (Eckart de Castilho and Gurevych, 2011). We
use DKPro Core3 for preprocessing. Specifically,
we used the default DKPro segmenter, TreeTagger
POS tagger and chunker, Jazzy Spell Checker, and
the Stanford parser.4 We trained a supervised model
(Naive Bayes) using Weka (Hall et al., 2009) with
feature extraction based on clearTK (Ogren et al.,
2008). The following features have been used:

BOW features Bag-of-word features are based on
the assumption that certain words need to appear in
a correct answer. We used a mixture of token uni-
grams, bigrams, and trigrams, where each n-gram is
a binary feature that can either be true or false for a
document.5 Additionally, we also used the number
of tokens in the student answer as another feature in
this group.

Syntactic Features We extend BOW features
with syntactic functions by adding dependency and
phrase n-grams. Dependency n-grams are combina-
tions of two tokens and their dependency relation.
Phrase n-grams are combinations of the main verb
and the noun phrase left and right of the verb. In
both cases, we use the 10 most frequent n-grams.

Basic Similarity Features This group of features
computes the similarity between the reference an-
swer and the student answer. In case there is more
than one reference answer, we compute all pairwise
similarity scores and add the minimum, maximum,
average, and median similarity.6

Semantic Similarity Features are very similar to
the basic similarity features, except that we use se-
mantic similarity measures in order to bridge a pos-
sible vocabulary gap between the student and refer-
ence answer. We use the ESA measure (Gabrilovich

3code.google.com/p/dkpro-core-asl/
4DKPro Core v1.4.0, TreeTagger models v20130204.0,

Stanford parser PCFG model v20120709.0.
5Using the 750 most frequent n-grams gave good results on

the training set, so we also used this number for the test runs.
6As basic similarity measures, we use greedy string tiling

(Wise, 1996) with n = 3, longest common subsequence and
longest common substring (Allison and Dix, 1986), and word
n-gram containment(Lyon et al., 2001) with n = 2.
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and Markovitch, 2007) based on concept vectors
build from WordNet, Wiktionary, and Wikipedia.

Spelling Features As spelling errors might be in-
dicative of the answer quality, we use the number of
spelling errors normalized by the text length as an
additional feature.

Entailment Features We run BIUTEE (Stern and
Dagan, 2011) on the test instance (as T ) with each
reference answer (as H), which results in an array
of numerical entailment confidence values. If there
is more than one reference answer, we compute all
pairwise confidence scores and add the minimum,
maximum, average, and median confidence.

3.2 Data Selection Regime
There are three scenarios under which our system
is expected to perform. For each one, we chose (a-
priori) a different set of examples for training.

Unseen Answers Classify new answers to famil-
iar questions. Train on instances that have the same
question as the test instance.

Unseen Questions Classify new answers to un-
seen (but related) questions. Partition the questions
according to their IDs, creating sets of related ques-
tions, and then train on all the instances that share
the same partition as the test instance.

Unseen Domains Classify new answers to unseen
questions from unseen domains. Use all available
training data from the same dataset.

3.3 Submitted Runs
The runs represent the different levels of lexicaliza-
tion of the model which we expect to have strong
influence in each scenario:

Run 1 uses all features as described above. We
expect the BOW features to be helpful for the Un-
seen Answers setting, but to be misleading for un-
seen questions or domains, as the same word indi-
cating a correct answer for one question might cor-
respond to a wrong answer for another question.

Run 2 uses only non-lexicalized features, i.e. all
features except the BOW and syntactic features, in
order to assess the impact of the lexicalization that
overfits on the topic of the questions. We expect this
run to be less sensitive to the topic changes in the
Unseen Questions and Unseen Domains settings.

Run 3 uses only the basic similarity and the en-
tailment features. It should indicate the baseline per-

Unseen Unseen Unseen
Task Run Answers Questions Domains

2-way
1 .734 .678 .671
2 .665 .644 .677
3 .662 .625 .677

3-way
1 .670 .573 .572
2 .595 .561 .577
3 .574 .540 .576

5-way
1 .590 .376 .407
2 .495 .397 .371
3 .461 .394 .376

Table 1: Main task performance for the SciEntsBank test
set. We show weighted average F1 for the three scenarios.

Cor. Par Con. Irr. Non.
Correct 903 463 164 309 78

Partially Correct 219 261 93 333 80
Contradictory 61 126 91 103 36

Irrelevant 209 229 119 476 189
Non-Domain 0 0 0 2 18

Table 2: Confusion matrix of Run 1 in the 5-way Unseen
Domains scenario. The vertical axis is the real class, the
horizontal axis is the predicted class.

formance that can be expected without targeting the
system towards a certain topic.

3.4 Empirical Results

Table 1 shows the F1-measure (weighted average)
of the three runs. As was expected for the Unseen
Answers scenario, Run 1 using a lexicalized model
outperformed the other two runs. However, in the
other scenarios Run 1 is not significantly better, as
lexicalized features do not have the same impact if
the question or the domain changes.

Table 2 shows the confusion matrix of Run 1 in
the 5-way Unseen Domains scenario. The Correct
category was classified quite reliably, but the Irrele-
vant category was especially hard. While the refer-
ence answer provides some clues for what is correct
or incorrect, the range of things that are “irrelevant”
for a given question is potentially very big and thus
cannot be easily learned. We also see that the system
ability to distinguish Correct and Partially Correct
answers need to be improved.

It is difficult to provide an exact assessment of our
system’s performance (with respect to other systems
in the challenge), since there are multiple tasks, sce-
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narios, datasets, and even metrics. However, we can
safely say that our system performed above average
in most settings, and showed competitive results in
the Unseen Domains scenario.

4 Pilot Task

In the pilot task each facet needs to be analyzed sep-
arately, which requires some changes in the system
architecture.

4.1 System Description
We segmented and lemmatized the input data using
the default DKPro segmenter and the TreeTagger
lemmatizer. The partial entailment system is com-
posed of three methods: Exact, WordNet, and BI-
UTEE. These were combined in different combina-
tions to form the different runs.

Exact In this baseline method, we represent a
student answer as a bag-of-words containing all to-
kens and lemmas appearing in the text. Lemmas
are used to account for minor morphological dif-
ferences, such as tense or plurality. We then check
whether both facet words appear in the set.

WordNet checks whether both facet words, or
their semantically related words, appear in the stu-
dent’s answer. We use WordNet (Fellbaum, 1998)
with the Resnik similarity measure (Resnik, 1995)
and count a facet term as matched if the similarity
score exceeds a certain threshold (0.9, empirically
determined on the training set).

BIUTEE processes dependency trees instead of
bags of words. We therefore added a pre-processing
stage that extracts a path in the dependency parse
that represents the facet. This is done by first pars-
ing the entire reference answer, and then locating the
two nodes mentioned in the facet. We then find their
lowest common ancestor (LCA), and extract the path
from the facet’s first word to the second through the
LCA. BIUTEE can now be given the student an-
swer and the pre-processed facet, and try to recog-
nize whether the former entails the latter.

4.2 Submitted Runs
In preliminary experiments using the provided train-
ing data, we found that the very simple Exact Match
baseline performed surprisingly well, with 0.96 pre-
cision and 0.32 recall on positive class instances (ex-
pressed facets). We therefore decided to use this fea-

Unseen Unseen Unseen
Answers Questions Domains

Baseline .670 .688 .731
Run 1 .756 .710 .760
Run 2 .782 .765 .816
Run 3 .744 .733 .770

Table 3: Pilot task performance across different scenar-
ios. The scores are F1-measures (weighted average).

ture as an initial filter, and employ the others for
classifying the “harder” cases. Training BIUTEE
only on these cases, while dismissing easy ones, im-
proved our system’s performance significantly.

Run 1: Exact OR WordNet This is essentially
just the WordNet feature on its own, because every
instance that Exact classifies as positive is also pos-
itive by WordNet.

Run 2: Exact OR (BIUTEE AND WordNet) If
the instance is non-trivial, this configuration requires
that both BIUTEE and WordNet Match agree on pos-
itive classification. Equivalent to the majority rule.

Run 3: Exact OR BIUTEE BIUTEE increases
recall of expressed facets at the expense of precision.

4.3 Empirical Results

Table 3 shows the F1-measure (weighted average) of
each run in each scenario, including Exact Match as
a quite strong baseline. In the majority of cases, Run
2 that combines entailment and WordNet-based lex-
ical matching, significantly outperformed the other
two. It is interesting to note that the systems’ perfor-
mance does not degrade in “harder” scenarios; this is
a result of the non-lexicalized nature of our methods.
Unfortunately, our system was the only submission
in this track, so we do not have any means to perform
relative comparison.

5 Conclusion

We combined semantic textual similarity with tex-
tual entailment to solve the problem of student re-
sponse analysis. Though our features were not tai-
lored for this task, they proved quite indicative, and
adapted well to unseen domains. We believe that ad-
ditional generic features and knowledge resources
are the best way to improve on our results, while
retaining the same robustness and generality as our
current architecture.
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