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Abstract

This paper describes the NRC submission to
the Spanish Cross-Lingual Word Sense Dis-
ambiguation task at SemEval-2013. Since this
word sense disambiguation task uses Spanish
translations of English words as gold annota-
tion, it can be cast as a machine translation
problem. We therefore submitted the output of
a standard phrase-based system as a baseline,
and investigated ways to improve its sense dis-
ambiguation performance. Using only local
context information and no linguistic analy-
sis beyond lemmatization, our machine trans-
lation system surprisingly yields top precision
score based on the best predictions. However,
its top 5 predictions are weaker than those
from other systems.

1 Introduction

This paper describes the systems submitted by the
National Research Council Canada (NRC) for the
Cross-Lingual Word Sense Disambiguation task at
SemEval 2013 (Lefever and Hoste, 2013). As in
the previous edition (Lefever and Hoste, 2010), this
word sense disambiguation task asks systems to dis-
ambiguate English words by providing translations
in other languages. It is therefore closely related to
machine translation. Our work aims to explore this
connection between machine translation and cross-
lingual word sense disambiguation, by providing a
machine translation baseline and investigating ways
to improve the sense disambiguation performance of
a standard machine translation system.

Machine Translation (MT) has often been used
indirectly for SemEval Word Sense Disambiguation

(WSD) tasks: as a tool to automatically create train-
ing data (Guo and Diab, 2010, for instance) ; as
a source of parallel data that can be used to train
WSD systems (Ng and Chan, 2007; van Gompel,
2010; Lefever et al., 2011); or as an application
which can use the predictions of WSD systems de-
veloped for SemEval tasks (Carpuat and Wu, 2005;
Chan et al., 2007; Carpuat and Wu, 2007). This Se-
mEval shared task gives us the opportunity to com-
pare the performance of machine translation systems
with other submissions which use very different ap-
proaches. Our goal is to provide machine transla-
tion output which is representative of state-of-the-art
approaches, and provide a basis for comparing its
strength and weaknesses with that of other systems
submitted to this task. We submitted two systems to
the Spanish Cross-Lingual WSD (CLWSD) task:

1. BASIC, a baseline machine translation system
trained on the parallel corpus used to define the
sense inventory;

2. ADAPT, a machine translation system that has
been adapted to perform better on this task.

After describing these systems in Sections 2 and
3, we give an overview of the results in Section 4.

2 BASIC: A Baseline Phrase-Based
Machine Translation System

We use a phrase-based SMT (PBSMT) architec-
ture, and set-up our system to perform English-to-
Spanish translation. We use a standard SMT system
set-up, as for any translation task. The fact that this
PBSMT system is intended to be used for CLWSD
only influences data selection and pre-processing.
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2.1 Model and Implementation

In order to translate an English sentence e into Span-
ish, PBSMT first segments the English sentence into
phrases, which are simply sequences of consecutive
words. Each phrase is translated into Spanish ac-
cording to the translations available in a translation
lexicon called phrase-table. Spanish phrases can be
reordered to account for structural divergence be-
tween the two languages. This simple process can
be used to generate Spanish sentences, which are
scored according to translation, reordering and lan-
guage models learned from parallel corpora. The
score of a Spanish translation given an English input
sentence e segmented into J phrases is defined as
follows: score(s, e) =

∑
i

∑
j λilog(φi(sj , ej)) +

λLMφLM (s)

Detailed feature definitions for phrase-based SMT
models can be found in Koehn (2010). In our sys-
tem, we use the following standard feature functions
φ to score English-Spanish phrase pairs:

• 4 phrase-table scores, which are conditional
translation probabilities and HMM lexical
probabilities in both directions translation di-
rections (Chen et al., 2011)

• 6 hierarchical lexicalized reordering scores,
which represent the orientation of the current
phrase with respect to the previous block that
could have been translated as a single phrase
(Galley and Manning, 2008)

• a word penalty, which scores the length of the
output sentence

• a word-displacement distortion penalty, which
penalizes long-distance reorderings.

In addition, fluency of translation is ensured by a
monolingual Spanish language model φLM , which
is a 5-gram model with Kneser-Ney smoothing.

Phrase translations are extracted based on IBM-
4 alignments obtained with GIZA++ (Och and Ney,
2003). The λ weights for these features are learned
using the batch lattice-MIRA algorithm (Cherry and
Foster, 2012) to optimize BLEU-4 (Papineni et al.,
2002) on a tuning set. We use PORTAGE, our inter-
nal PBSMT decoder for all experiments. PORTAGE
uses a standard phrasal beam-search algorithm with

cube pruning. The main differences between this
set-up and the popular open-source Moses system
(Koehn et al., 2007), are the use of hierarchical re-
ordering (Moses only supports non-hierarchical lex-
icalized reordering by default) and smoothed trans-
lation probabilities (Chen et al., 2011).

As a result, disambiguation decisions for the
CLWSD task are based on the following sources of
information:

• local source context, represented by source
phrases of length 1 to 7 from the translation and
reordering tables

• local target context, represented by the 5-gram
language model.

Each English sentence in the CLWSD task is
translated into Spanish using our PBSMT system.
We keep track of the phrasal segmentation used to
produce the translation hypothesis and identify the
Spanish translation of the English word of interest.
When the English word is translated into a multi-
word Spanish phrase, we output the Spanish word
within the phrase that has the highest IBM1 transla-
tion probability given the English target word.

For the BEST evaluation, we use this process
on the top PBSMT hypothesis to produce a single
CLWSD translation candidate. For the Out-Of-Five
evaluation, we produce up to five CLWSD transla-
tion candidates from the top 1000 PBSMT transla-
tion hypotheses.

2.2 Data and Preprocessing
Training the PBSMT system requires a two-step pro-
cess with two distinct sets of parallel data.

First, the translation, reordering and language
models are learned on a large parallel corpus, the
training set. We use the sentence pairs extracted
from Europarl by the organizers for the purpose of
selecting translation candidates for the gold annota-
tion. Training the SMT system on the exact same
parallel corpus ensures that the system “knows” the
same translations as the human annotators who built
the gold standard. This corpus consists of about
900k sentence pairs.

Second, the feature weights λ in the PBSMT are
learned on a smaller parallel corpus, the tuning set.
This corpus should ideally be drawn from the test
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domain. Since the CLWSD task does not provide
parallel data in the test domain, we construct the
tuning set using corpora publicly released for the
WMT2012 translation task1. Since sentences pro-
vided in the trial data appeared to come from a wide
variety of genres and domains, we decided to build
our tuning set using data from the news-commentary
domain, rather then the more narrow Europarl do-
main used for training. We selected the top 3000
sentence pairs from the WMT 2012 development
test sets, based on their distance to the CLWSD
trial and test sentences as measured by cross-entropy
(Moore and Lewis, 2010).

All Spanish and English corpora were processed
using FreeLing (Padró and Stanilovsky, 2012).
Since the CLWSD targets and gold translations
are lemmatized, we lemmatize all corpora. While
FreeLing can provide a much richer linguistic anal-
ysis of the input sentences, the PBSMT sytem only
makes use of their lemmatized representation. Our
systems therefore contrast with previous approaches
to CLWSD (van Gompel, 2010; Lefever et al., 2011,
for instance), which use richer sources of informa-
tion such as part-of-speech tags.

3 ADAPT: Adapting the MT system to the
CLWSD task

Our ADAPT system simply consists of two modifi-
cations to the BASIC PBSMT system.

First, it uses a shorter maximum English phrase
length. Instead of learning a translation lexicons for
phrases of length 1 to 7 as in the BASIC system,
the ADAPT system only uses phrases of length 1
and 2. While this dramatically reduces the amount
of source side context available for disambiguation,
it also reduces the amount of noise due to incorrect
word alignments. In addition, there is more evidence
to estimate reliable translation probabilities for short
phrase, since they tend to occur more frequently than
longer phrases.

Second, the ADAPT system is trained on larger
and more diverse data sets. Since MT systems are
known to perform better when they can learn from
larger amounts of relevant training data, we augment
our training set with additional parallel corpora from
the WMT-12 evaluations. We learn translation and

1http://www.statmt.org/wmt12/translation-task.html

reordering models for (1) the Europarl subset used
by the CLWSD organizers (900k sentence pairs, as
in the BASIC system), and (2) the news commen-
tary corpus from WMT12 (which comprises 150k
sentence pairs). For the language model, we use the
Spanish side of these two corpora, as well as that of
the full Europarl corpus from WMT12 (which com-
prises 1.9M sentences). Models learned on different
data sets are combined using linear mixtures learned
on the tuning set (Foster and Kuhn, 2007).

We also attempted other variations on the BASIC
system which were not as successful. For instance,
we tried to update the PBSMT tuning objective to be
better suited to the CLWSD task. When producing
translation of entire sentences, the PBSMT system
is expected to produce hypotheses that are simulta-
neously fluent and adequate, as measured by BLEU
score. In contrast, CLWSD measures the adequacy
of the translation of a single word in a given sen-
tence. We therefore attempted to tune for BLEU-
1, which only uses unigram precision, and therefore
focuses on adequacy rather than fluency. However,
this did not improve CLWSD accuracy.

4 Results

Table 1 gives an overview of the results per tar-
get word for both systems, as measured by all of-
ficial metrics (see Lefever and Hoste (2010) for a
detailed description.) According to the BEST Pre-
cision scores, the ADAPT system outperforms the
BASIC system for almost all target words. Using
only the dominant translation picked by the human
annotators as a reference (Mode), the precision for
BEST scores yield more heterogeneous results. This
is not surprising since the ADAPT system uses more
heterogeneous training data, which might make it
harder to learn a reliable estimate of a single domi-
nant translation. When evaluating the precision out
of the top 5 candidates (OOF), all systems improve,
indicating that PBSMT systems can usually produce
some correct alternatives to their top hypothesis.

Table 2 lets us compare the average performance
of the BASIC and ADAPT systems with other par-
ticipating systems. The ADAPT system surprisingly
yields the top performance based on the Precision
BEST evaluation setting, suggesting that, even with
relatively poor models of context, a PBSMT sys-
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Precision: Best Best Best Mode Best Mode OOF OOF OOF Mode OOF Mode
Systems: BASIC ADAPT BASIC ADAPT BASIC ADAPT BASIC ADAPT
coach 22.30 60.10 13.64 59.09 38.30 66.30 31.82 63.64
education 36.07 38.01 73.08 84.62 42.36 42.80 84.62 84.62
execution 41.07 41.07 32.00 32.00 41.57 41.57 36.00 36.00
figure 23.43 29.02 33.33 37.04 31.15 36.12 37.04 44.44
job 13.45 24.26 0.00 37.23 26.52 37.57 27.27 54.55
letter 35.35 37.23 66.67 64.10 37.22 41.20 66.67 66.67
match 15.07 16.53 2.94 2.94 20.70 20.90 5.88 8.82
mission 67.98 67.98 85.29 85.29 67.98 67.98 85.29 85.29
mood 7.18 8.97 0.00 0.00 26.99 29.90 11.11 11.11
paper 31.33 44.59 29.73 40.54 50.45 55.61 45.95 51.35
post 32.26 33.72 23.81 19.05 50.67 53.28 57.14 42.86
pot 34.20 36.63 35.00 32.50 36.12 37.13 32.50 25.00
range 5.41 7.56 10.00 0.00 10.39 17.47 10.00 20.00
rest 20.91 23.44 12.00 8.00 27.44 25.89 16.00 16.00
ring 15.87 10.10 18.92 10.81 42.80 43.14 48.65 45.95
scene 15.86 23.42 43.75 62.50 38.35 37.53 81.25 81.25
side 24.63 33.14 13.04 17.39 36.84 44.03 21.74 39.13
soil 43.88 43.63 66.67 66.67 51.73 57.15 66.67 66.67
strain 24.00 26.24 35.71 35.71 38.37 36.58 42.86 35.71
test 34.45 37.51 50.00 28.57 43.61 40.86 50.00 28.57
Average 27.24 32.16 32.28 36.20 37.98 41.65 42.92 45.38

Table 1: Precision scores by target word for the BASIC and ADAPT systems

Precision: Best Best Mode OOF OOF Mode
System
Best 32.16 37.11 61.69 57.35
ADAPT 32.16 36.20 41.65 45.38
BASIC 27.24 32.28 37.98 42.92
Baseline 23.23 27.48 53.07 64.65

Table 2: Overview of official results: comparison of
the precision scores of the ADAPT and BASIC sys-
tems with the best system according to each metric
and with the official baseline

tem can succeed in learning useful disambiguating
information for its top candidate. Despite the prob-
lems stemming from learning good dominant trans-
lations from heterogeneous data, ADAPT ranks near
the top using the Best Mode metric. The rankings in
the out-of-five settings are strikingly different: the
difference between BEST and OOF precisions are
much smaller for BASIC and ADAPT than for all
other participating systems (including the baseline.)
This suggests that our PBSMT system only succeeds
in learning to disambiguate one or two candidates
per word, but does not do a good job of a estimating

the full translation probability distribution of a word
in context. As a result, there is potentially much to
be gained from combining PBSMT systems with the
approaches used by other systems, which typically
use richer feature representation and context mod-
els. Further exploration of the role of context in PB-
SMT performance and a comparison with dedicated
classifiers trained on the same word-aligned parallel
data can be found in (Carpuat, 2013).

5 Conclusion

We have described the two systems submitted by
the NRC to the Cross-Lingual Word Sense Disam-
biguation task at SemEval-2013. We used phrase-
based machine translation systems trained on lem-
matized parallel corpora. These systems are unsu-
pervised and do not use any linguistic analysis be-
yond lemmatization. Disambiguation decisions are
based on the local source context available in the
phrasal translation lexicon and the target n-gram
language model. This simple approach gives top
performance when measuring the precision of the
top predictions. However, the top 5 predictions are
interestingly not as good as those of other systems.
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(Carpuat, 2013)
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Lluı́s Padró and Evgeny Stanilovsky. 2012. FreeLing
3.0: Towards wider multilinguality. In Proceedings of
the Language Resources and Evaluation Conference
(LREC 2012), Istanbul, Turkey, May.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Computa-
tional Linguistics, Philadelphia, PA, July.

Maarten van Gompel. 2010. Uvt-wsd1: A cross-lingual
word sense disambiguation system. In Proceedings of
the 5th International Workshop on Semantic Evalua-
tion, pages 238–241, Uppsala, Sweden, July.

192


