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Abstract

This paper describes a temporal expression
identification and normalization system, Man-
TIME, developed for the TempEval-3 chal-
lenge. The identification phase combines
the use of conditional random fields along
with a post-processing identification pipeline,
whereas the normalization phase is carried out
using NorMA, an open-source rule-based tem-
poral normalizer. We investigate the perfor-
mance variation with respect to different fea-
ture types. Specifically, we show that the use
of WordNet-based features in the identifica-
tion task negatively affects the overall perfor-
mance, and that there is no statistically sig-
nificant difference in using gazetteers, shal-
low parsing and propositional noun phrases
labels on top of the morphological features.
On the test data, the best run achieved 0.95
(P), 0.85 (R) and 0.90 (F1) in the identifica-
tion phase. Normalization accuracies are 0.84
(type attribute) and 0.77 (value attribute). Sur-
prisingly, the use of the silver data (alone or in
addition to the gold annotated ones) does not
improve the performance.

1 Introduction

Temporal information extraction (Verhagen et al.,
2007; Verhagen et al., 2010) is pivotal for many Nat-
ural Language Processing (NLP) applications such
as question answering, text summarization and ma-
chine translation. Recently the topic aroused in-
creasing interest also in the medical domain (Sun et
al., 2013; Kovacevic et al., 2013).

Following the work of Ahn et al. (2005), the
temporal expression extraction task is now conven-

tionally divided into two main steps: identification
and normalization. In the former step, the effort
is concentrated on how to detect the right bound-
ary of temporal expressions in the text. In the nor-
malization step, the aim is to interpret and repre-
sent the temporal meaning of the expressions using
TimeML (Pustejovsky et al., 2003) format. In the
TempEval-3 challenge (UzZaman et al., 2012) the
normalization task is focused only on two temporal
attributes: type and value.

2 System architecture

ManTIME mainly consists of two components, one
for the identification and one for the normalization.

2.1 Identification

We tackled the problem of identification as a se-
quencing labeling task leading to the choice of Lin-
ear Conditional Random Fields (CRF) (Lafferty et
al., 2001). We trained the system using both human-
annotated data (TimeBank and AQUAINT corpora)
and silver data (TE3Silver corpus) provided by the
organizers of the challenge in order to investigate the
importance of the silver data.

Because the silver data are far more numerous
(660K tokens vs. 95K), our main goal was to rein-
force the human-annotated data, under the assump-
tion that they are more informative with respect to
the training phase. Similarly to the approach pro-
posed by Adafre and de Rijke (2005), we developed
a post-processing pipeline on top of the CRF se-
quence labeler to boost the results. Below we de-
scribe each component in detail.
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2.1.1 Conditional Random Fields

The success of applying CRFs mainly depends on
three factors: the labeling scheme (BI, BIO, BIOE
or BIOEU), the topology of the factor graph and
the quality of the features used. We used the BIO
format in all the experiments performed during this
research. The factor graph has been generated us-
ing the following topology: (wp), (w—_1), (w—2),
(w1), (Wi2), (W—2Aw-1), (W_1Awp), (WoAW41),
(w_1 ANwo /\w+1), (U)() ANw4q /\w+2), (w+1 /\w+2),
(w,Q Nw_1 A wo), (w,1 VAN ULH) and (w,Q A U}+2).

The system tokenizes each document in the cor-
pus and extracts 94 features. These belong to the
following four disjoint categories:

e Morphological: This set includes a compre-
hensive list of features typical of Named En-
tity Recognition (NER) tasks, such as the word
as it is, lemma, stem, pattern (e.g. ‘Jan-2003’:
"Xxx-dddd’), collapsed pattern (e.g. ’Jan-
2003’: "Xx-d’), first 3 characters, last 3 charac-
ters, upper first character, presence of s’ as last
character, word without letters, word without
letters or numbers, and verb tense. For lemma
and POS tags we use TreeTagger (Schmid,
1994). Boolean values are included, indicating
if the word is lower-case, alphabetic, digit, al-
phanumeric, titled, capitalized, acronym (cap-
italized with dots), number, decimal number,
number with dots or stop-word. Additionally,
there are features specifically crafted to han-
dle temporal expressions in the form of regu-
lar expression matching: cardinal and ordinal
numbers, times, dates, temporal periods (e.g.
morning, noon, nightfall), day of the week, sea-
sons, past references (e.g. ago, recent, before),
present references (e.g. current, now), future
references (e.g. tomorrow, later, ahead), tem-
poral signals (e.g. since, during), fuzzy quan-
tifiers (e.g. about, few, some), modifiers, tem-
poral adverbs (e.g. daily, earlier), adjectives,
conjunctions and prepositions.

e Syntactic: Chunks and propositional noun
phrases belong to this category. Both are
extracted using the shallow parsing software
MBSP'.

"http://www.clips.ua.ac.be/software/mbsp-for-python
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e Gazetteers: These features are expressed us-
ing the BIO format because they can include
expressions longer than one word. The inte-
grated gazetteers are: male and female names,
U.S. cities, nationalities, world festival names
and ISO countries.

e WordNet: For each word we use the number of
senses associated to the word, the first and the
second sense name, the first 4 lemmas, the first
4 entailments for verbs, the first 4 antonyms,
the first 4 hypernyms and the first 4 hyponyms.
Each of them is defined as a separate feature.

The features mentioned above have been com-
bined in 4 different models:

e Model 1: Morphological only
e Model 2: Morphological + syntactic
e Model 3: Morphological + gazetteers

e Model 4: Morphological + gazetteers + Word-
Net

All the experiments have been carried out using
CRF++ 0.57? with parameters C' = 1, = 0.0001
and L2-regularization function.

2.1.2 Model selection

The model selection was performed over the
entire training corpus. Silver data and human-
annotated data were merged, shuffled at sentence-
level (seed = 490) and split into two sets: 80% as
cross-validation set and 20% as real-world test set.
The cross-validation set was shuffled 5 times, and
for each of these, the 10-fold cross validation tech-
nique was applied.

The analysis is statistically significant (p =
0.0054 with ANOVA test) and provides two impor-
tant outcomes: (i) the set of WordNet features nega-
tively affects the overall classification performance,
as suggested by Rigo et al. (2011). We believe this is
due to the sparseness of the labels: many tokens did
not have any associated WordNet sense. (ii) There
is no statistically significant difference among the
first three models, despite the presence of apparently
important information such as chunks, propositional

Zhttps://code.google.com/p/crfpp/
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Figure 1: Differences among models using 5x10-fold
cross-validation

noun phrases and gazetteers. The Figure 1 shows the
box plots for each model.

In virtue of this analysis, we opted for the smallest
feature set (Model 1) to prevent overfitting.

In order to get a reliable estimation of the perfor-
mance of the selected model on the real world data,
we trained it on the entire cross-validation set and
tested it against the real-word test set. The results
for all the models are shown in the following table:

System Pre. | Rec. | Fg—
Model 1 | 83.20 | 85.22 | 84.50
Model 2 | 83.57 | 85.12 | 84.33
Model 3 | 83.51 | 85.12 | 84.31
Model 4 | 83.15 | 84.44 | 83.79

Precision, Recall and Fjg—; score are computed
using strict matching.

The models used for the challenge have been
trained using the entire training set.

2.1.3 Post-processing identification pipeline

Although CRFs already provide reasonable per-
formance, equally balanced in terms of precision
and recall, we focused on boosting the baseline per-
formance through a post-processing pipeline. For
this purpose, we introduced 3 different modules.

Probabilistic correction module averages the
probabilities from the trained CRFs model with the
ones extracted from human-annotated data only. For
each token, we extracted: (i) the conditional proba-
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bility for each label to be assigned (B, I or O), and
(ii) the prior probability of the labels in the human-
annotated data only. The two probabilities are aver-
aged for every label of each token. The list of tokens
extracted in the human-annotated data was restricted
to those that appeared within the span of temporal
expressions at least twice. The application of this
module in some cases has the effect of changing the
most likely label leading to an improvement of re-
call, although its major advantage is making CRFs
predictions less strict.

BIO fixer fixes wrong label sequences. For the
BIO labeling scheme, the sequence O-I is necessar-
ily wrong. We identified B-I as the appropriate sub-
stitution. This is the case in which the first token
has been incorrectly annotated (e.g. “Three/O days/I
ago/l ./O” is converted into “Three/B days/I ago/l
/0”). We also merged close expressions such as B-
B or I-B, because different temporal expressions are
generally divided at least by a symbol or a punctu-
ation character (e.g. “Wednesday/B morning/B” is
converted into “Wednesday/B morning/I”).

Threshold-based label switcher uses the prob-
abilities extracted from the human-annotated data.
When the most likely label (in the human-annotated
data) has a prior probability greater than a certain
threshold, the module changes the CRFs predicted
label to the most likely one. This leads to force
the probabilities learned from the human-annotated
data.

Through repeated empirical experiments on a
small sub-set of the training data, we found an
optimal threshold value (0.87) and an optimal se-
quence of pipeline components (Probabilistic cor-
rection module, BIO fixer, Threshold-based label
switcher, BIO fixer).

We analyzed the effectiveness of the post-
processing identification pipeline using a 10-fold
cross-validation over the 4 models. The difference
between CRFs and CRFs + post-processing pipeline
is statistically significant (p = 3.51 x 10723 with
paired T-test) and the expected average increment is
2.27% with respect to the strict Fg—; scores.

2.2 Normalization

The normalization component is an updated version
of NorMA (Filannino, 2012), an open-source rule-
based system.



.. Identification Normalization
# | Training data . - - : Overall
Strict matching Lenient matching Accuracy

run | (post-processing) Pre. | Rec. | Fg_; | Pre. | Rec. | Fg—q || Type | Value score
1 | Human&Silver (no) | 78.57 | 63.77 | 70.40 | 97.32 | 78.99 | 87.20 || 88.99 | 77.06 67.20
2 | Human&sSilver (yes) || 79.82 | 65.94 | 72.22 | 97.37 | 80.43 | 88.10 || 87.38 | 75.68 66.67
3 | Human (no) 76.07 | 64.49 | 69.80 | 94.87 | 80.43 | 87.06 || 87.39 | 77.48 67.45
4 | Human (yes) 78.86 | 70.29 | 74.33 | 95.12 | 84.78 | 89.66 || 86.31 | 76.92 68.97
5 | Silver (no) 77.68 | 63.04 | 69.60 | 97.32 | 78.99 | 87.20 || 88.99 | 77.06 67.20
6 | Silver (yes) 81.98 | 65.94 | 73.09 | 98.20 | 78.99 | 87.55 || 90.83 | 77.98 68.27

Table 1: Performance on the TempEval-3 test set.

3 Results and Discussion

We submitted six runs as combinations of different
training sets and the use of the post-processing iden-
tification pipeline. The results are shown in Table 1
where the overall score is computed as multiplica-
tion between lenient Fjg_; score and the value accu-
racy.

In all the runs, recall is lower than precision. This
is an indication of a moderate lexical difference be-
tween training data and test data. The relatively low
type accuracy testifies the normalizer’s inability to
recognize new lexical patterns. Among the correctly
typed temporal expressions, there is still about 10%
of them for which an incorrect value is provided.
The normalization task is proved to be challenging.

The training of the system by using human-
annotated data only, in addition to the post-
processing pipeline, provided the best results, al-
though not the highest normalization accuracy. Sur-
prisingly, the silver data do not improve the per-
formance, both when used alone or in addition
to human-annotated data (regardless of the post-
processing pipeline usage).

The post-processing pipeline produces the high-
est precision when applied to the silver data only.
In this case, the pipeline acts as a reinforcement of
the human-annotated data. As expected, the post-
processing pipeline boosts the performance of both
precision and recall. We registered the best improve-
ment with the human-annotated data.

Due to the small number of temporal expressions
in the test set (138), further analysis is required to
draw more general conclusions.
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4 Conclusions

We described the overall architecture of ManTIME,
a temporal expression extraction pipeline, in the
context of TempEval-3 challenge.

This research shows, in the limits of its general-
ity, the primary and exhaustive importance of mor-
phological features to the detriment of syntactic fea-
tures, as well as gazetteer and WordNet-related ones.
In particular, while syntactic and gazetteer-related
features do not affect the performance, WordNet-
related features affect it negatively.

The research also proves the use of a post-
processing identification pipeline to be promising
for both precision and recall enhancement.

Finally, we found out that the silver data do not
improve the performance, although we consider the
test set too small for this result to be generalizable.

To aid replicability of this work, the system
code, machine learning pre-trained models, statis-
tical validation details and an online DEMO are
available at: http://www.cs.man.ac.uk/
~filannim/projects/tempeval-3/
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