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Abstract

We created a dataset of syntactic-ngrams
(counted dependency-tree fragments) based
on a corpus of 3.5 million English books. The
dataset includes over 10 billion distinct items
covering a wide range of syntactic configura-
tions. It also includes temporal information,
facilitating new kinds of research into lexical
semantics over time. This paper describes the
dataset, the syntactic representation, and the
kinds of information provided.

1 Introduction

The distributional hypothesis of Harris (1954) states
that properties of words can be captured based on
their contexts. The consequences of this hypoth-
esis have been leveraged to a great effect by the
NLP community, resulting in algorithms for in-
ferring syntactic as well as semantic properties of
words (see e.g. (Turney and Pantel, 2010; Baroni
and Lenci, 2010) and the references therein).

In this paper, we describe a very large dataset
of syntactic-ngrams, that is, structures in which the
contexts of words are based on their respective po-
sition in a syntactic parse tree, and not on their se-
quential order in the sentence: the different words in
the ngram may be far apart from each other in the
sentence, yet close to each other syntactically. See
Figure 1 for an example of a syntactic-ngram.

The utility of syntactic contexts of words for con-
structing vector-space models of word meanings is
well established (Lin, 1998; Lin and Pantel, 2001;
Pad6 and Lapata, 2007; Baroni and Lenci, 2010).
Syntactic relations are successfully used for mod-
eling selectional preferences (Erk and Padd, 2008;
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Erk et al., 2010; Ritter et al., 2010; Séaghdha,
2010), and dependency paths are also used to in-
fer binary relations between words (Lin and Pantel,
2001; Wu and Weld, 2010). The use of syntactic-
ngrams holds promise also for improving the accu-
racy of core NLP tasks such as syntactic language-
modeling (Shen et al., 2008) and syntactic-parsing
(Chen et al., 2009; Sagae and Gordon, 2009; Co-
hen et al., 2012), though most successful attempts
to improve syntactic parsing by using counts from
large corpora are based on sequential rather than
syntactic information (Koo et al., 2008; Bansal and
Klein, 2011; Pitler, 2012), we believe this is be-
cause large-scale datasets of syntactic counts are not
readily available. Unfortunately, most work utiliz-
ing counts from large textual corpora does not use a
standardized corpora for constructing their models,
making it very hard to reproduce results and chal-
lenging to compare results across different studies.
Our aim in this work is not to present new meth-
ods or results, but rather to provide a new kind of a
large-scale (based on corpora about 100 times larger
than previous efforts) high-quality and standard re-
source for researchers to build upon. Instead of fo-
cusing on a specific task, we aim to provide a flexi-
ble resource that could be adapted to many possible
tasks.
Specifically, the contribution of this work is in
creating a dataset of syntactic-ngrams which is:
e Derived from a very large (345 billion words)
corpus spanning a long time period.
e Covers a wide range of syntactic phenomena
and is adaptable to many use cases.
e Based on state-of-the-art syntactic processing
in a modern syntactic representation.
e Broken down by year of occurrence, as well

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 241-247, Atlanta, Georgia, June 13-14, 2013. (©2013 Association for Computational Linguistics



nsu

]
AP~ POBIN PRI N
groups investigators found
NNS NNS VBN

Figure 1: A syntactic ngram appearing 112 times in
the extended-biarcs set, which include structures contain-
ing three content words (see Section 4). Grayed items
are non-content words and are not included in the word
count. The dashed auxiliary “have” is a functional marker
(see Section 3), appearing only in the extended-* sets.

as some coarse-grained regional and genre dis-
tinctions (British, American, Fiction).

e Freely available for non-commercial use. !

After describing the underlying syntactic represen-
tation, we will present our definition of a syntactic-
ngram, and detail the kinds of syntactic-ngrams we
chose to include in the dataset. Then, we present de-
tails of the corpus and the syntactic processing we
performed.

With respect to previous efforts, the dataset has the
following distinguishing characteristics:

Temporal Dimension A unique aspect of our
dataset is the temporal dimension, allowing inspec-
tion of how the contexts of different words vary
over time. For example, one could examine how the
meaning of a word evolves over time by looking at
the contexts it appears in within different time peri-
ods. Figure 2 shows the cosine similarity between
the word “rock” and the words “stone” and “jazz”
from year 1930 to 2000, showing that rock acquired
a new meaning around 1968.

Large syntactic contexts Previous efforts of provid-
ing syntactic counts from large scale corpora (Ba-
roni and Lenci, 2010) focus on relations between
two content words. Our dataset include structures
covering much larger tree fragments, some of them
including 5 or more content words. By including
such structures we hope to encourage research ex-
ploring higher orders of interactions, for example
modeling the relation between adjectives of two con-
joined nouns, the interactions between subjects and
objects of verbs, or fine-grained selectional prefer-
ences of verbs and nouns.

The dataset is made publicly available under the Cre-
ative Commons Attribution-Non Commercial ShareAlike 3.0
Unported License: http://creativecommons.org/licenses/by-nc-
sa/3.0/legalcode.
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Figure 2: Word-similarity over time: The word “rock™ starts
to become similar to “jazz” around 1968. The plot shows the
cosine similarity between the immediate syntactic contexts of
of the word “rock” in each year, to the immediate syntactic con-
texts of the words “jazz” (in red) and “stone” (in blue) aggre-
gated over all years.

A closely related effort to add syntactic anno-
tation to the books corpus is described in Lin et
al. (2012). That effort emphasize an interactive
query interface covering several languages, in which
the underlying syntactic representations are linear-
ngrams enriched with universal part-of-speech tags,
as well as first order unlabeled dependencies. In
contrast, our emphasis is not on an easy-to-use query
interface but instead a useful and flexible resource
for computational-minded researchers. We focus
on English and use finer-grained English-specific
POS-tags. The syntactic analysis is done using a
more accurate parser, and we provide counts over la-
beled tree fragments, covering a diverse set of tree-
fragments many of which include more than two
content words.

Counted Fragments instead of complete trees
While some efforts provide complete parse trees
from large corpora (Charniak, 2000; Baroni et al.,
2009; Napoles et al., 2012), we instead provide
counted tree fragments. We believe that our form of
aggregate information is of more immediate use than
the raw parse trees. While access to the parse trees
may allow for somewhat greater flexibility in the
kinds of questions one could ask, it also comes with
a very hefty price tag in terms of the required com-
putational resources: while counting seems trivial,
it is, in fact, quite demanding computationally when
done on such a scale, and requires a massive infras-
tructure. By lifting this burden of NLP researchers,
we hope to free them to tackle interesting research
questions.



2 Underlying Syntactic Representation

We assume the part-of-speech tagset of the Penn
Treebank (Marcus et al., 1993). The syntactic rep-
resentation we work with is based on dependency-
grammar. Specifically, we use labeled dependency
trees following the “basic” variant of the Stanford-
dependencies scheme (de Marneffe and Manning,
2008b; de Marneffe and Manning, 2008a).

Dependency grammar is a natural choice, as it
emphasizes individual words and explicitly mod-
els the connections between them. Stanford de-
pendencies are appealing because they model rela-
tions between content words directly, without in-
tervening functional markers (so in a construction
such as “wanted to know” there is a direct rela-
tion (wanted, know) instead of two relation
(wanted, to) and (to, know). This facil-
itates focusing on meaning-bearing content words
and including the maximal amount of information
in an ngram.

3 Syntactic-ngrams

We define a syntactic-ngram to be a rooted con-
nected dependency tree over k words, which is a
subtree of a dependency tree over an entire sentence.
For each of the k£ words in the ngram, we provide in-
formation about the word-form, its part-of-speech,
and its dependency relation to its head. The ngram
also indicates the relative ordering between the dif-
ferent words (the order of the words in the syntactic-
ngram is the same as the order in which the words
appear in the underlying sentence) but not the dis-
tance between them, nor an indication whether there
is a missing material between the nodes. Examples
of syntactic-ngrams are provided in Figures 1 and 3.
Content-words and Functional-markers We dis-
tinguish between content-words which are mean-
ing bearing elements and functional-markers, which
serve to add polarity, modality or definiteness in-
formation to the meaning bearing elements, but do
not carry semantic meaning of their own, such as
the auxiliary verb “have” in Figure 1. Specifi-
cally, we treat words with a dependency-label of
det, poss, neg, aux, auxpass, ps, mark,
complm and prt as functional-markers. With the
exception of poss, these are all closed-class cat-
egories. All other words except for prepositions
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and conjunctions are treated as content-words. A
syntactic-ngram of order n includes exactly n con-
tent words. It may optionally include all of the
functional-markers that modify the content-words.
Conjunctions and Prepositions Conjunctions and
Prepositions receive a special treatment. When a co-
ordinating word (“and”, “or”, “but”) appears as part
of a conjunctive structure (e.g. “X, Y, and Z”), it
is treated as a non-content word. Instead, it is al-
ways included in the syntactic-ngrams that include
the conjunctive relation it is a part of, allowing to
differentiate between the various kinds of conjunc-
tions. An example is seen in Figure 3d, in which
the relation conj (efficient, effective)
is enriched with the coordinating word “or”. When
a coordinating word does not explicitly take part in
a conjunction relation (e.g. “But, ...”) it is treated
as a content word.

When a preposition is part of a prepositional mod-
ification (i.e. in the middle of the pair (prep,
pcomp) or (prep, pobj)), such as the word
“of” in Figures 1 and 3h and the word “as” in Figure
3e, it is treated as a non-content word, and is always
included in a syntactic-ngram whenever the words it
connects are included. In cases of ellipsis or other
cases where there is no overt pobj or pcomp (“he
is hard to deal with”) the preposition is treated as a
content word.?

Multiword Expressions Some multiword expres-
sions are recognized by the parser. Whenever a con-
tent word in an ngram has modifiers with the mwe
relation, they are included in the ngram.

4 The Provided Ngram Types

‘We aimed to include a diverse set of relations, with
maximal emphasis on relations between content-
bearing words, while still retaining access to defi-

>This treatment of prepositions and conjunction is similar to
the “collapsed” variant of Stanford Dependencies (de Marneffe
and Manning, 2008a), in which preposition- and conjunction-
words do not appear as nodes in the tree but are instead anno-
tated on the dependency label between the content words they
connect, e.g. prep_with (saw, telescope). However,
we chose to represent the preposition or conjunction as a node
in the tree rather than moving it to the dependency label as it
retains the information about the location of the function word
with respect to the other words in the structure, is consistent
with cases in which one of the content words is not present, and
does not blow up the label-set size.



niteness, modality and polarity if they are desired.
The dataset includes the following types of syntactic
structures:

nodes (47M items) consist of a single content word,
and capture the syntactic role of that word (as in Fig-
ure 3a). For example, we can learn that the pro-
noun “he” is predominantly used as a subject, and
that “help” as a noun is over 4 times more likely to
appear in object than in subject position.

arcs (919M items) consist of two content words, and
capture direct dependency relations such as “subject
of”, “adverbial modifier of” and so on (see Figure
3c,3d for examples). These correspond to “depen-
dency triplets” as used in Lin (1998) and most other
work on syntax-based semantic similarity.

biarcs (1.78B items) consist of three content words
(either a word and its two daughters, or a child-
parent-grandparent chain) and capture relations such
as “subject verb object”, “a noun and two adjectivial
modifiers”, “verb, object and adjectivial modifier of
the object” and many others.

triarcs (1.87B items) consist of four content words
(example in Figure 3f). The locality of the depen-
dency representation causes this set of three-arcs
structures to be large, sparse and noisy — many of
the relations may appear random because some arcs
are in many cases almost independent given the oth-
ers. However, some of the relations are known to be
of interest, and we hope more of them will prove to
be of interest in the future. Some of the interesting
relations include:

- modifiers of the head noun of the subject or object
in an SVO construction: ((small,boy), ate, cookies),
(boy, ate, (tasty, cookies)), and with abstraction: ad-
jectives that a boy likes to eat: (boy, ate, (tasty, *) )
- arguments of an embeded verb (said, (boy, ate,
cookie) ), (said, ((small, boy), ate) )

- modifiers of conjoined elements ( (small, boy)
(young, girl) ) , ( (small, *) (young, *) )

- relative clause constructions ( boy, (girl, with-
cookies, saw) )

quadarcs (187M items) consist of 5 content words
(example in Figure 3h). In contrast to the previous
datasets, this set includes only a subset of the pos-
sible relations involving 5 content words. We chose
to focus on relations which are attested in the liter-
ature (Padé and Lapata 2007; Appendix A), namely
structures consisting of two chains of length 2 with a
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single head, e.g. ( (small, boy), ate, (tasty, cookie) ).
extended-nodes, extended-arcs, extended-biarcs,
extended-triarcs, extended-quadarcs (80M,
1.08B, 1.62B, 1.71B, and 180M items) Like the
above, but the functional markers of each content
words are included as well (see examples in Figures
3b, 3e, 3g). These structures retain information
regarding aspects such as modality, polarity and
definiteness, distinguishing, e.g. “his red car” from
“her red car”’, “will go” from “should go” and “a
best time” from “the best time”.

verbargs (130M items) This set of ngrams consist
of verbs with all their immediate arguments, and
can be used to study interactions between modi-
fiers of a verb, as well as subcategorization frames.
These structures are also useful for syntactic lan-
guage modeling, as all the daughters of a verb are
guaranteed to be present.

nounargs (275M items) This set of ngrams consist
of nouns with all their immediate arguments.
verbargs-unlex, nounargs-unlex (114M, 195M
items) Like the above, but only the head word and
the top-1000 occurring words in the English-1M
subcorpus are lexicalized — other words are replaced
with a xW+ symbol. By abstracting away from non-
frequent words, we include many of the larger syn-
tactic configurations that will otherwise be pruned
away by our frequency threshold. These could be
useful for inspecting fine-grained syntactic subcate-
gorization frames.

S Corpora and Syntactic Processing

The dataset is based on the English Google Books
corpus. This is the same corpus used to derive the
Google Books Ngrams, and is described in detail in
Michel et al. (2011). The corpus consists of the text
of 3,473,595 English books which were published
between 1520 and 2008, with the majority of the
content published after 1800. We provide counts
based on the entire corpus, as well as on several sub-
sets of it:

English 1M Uniformly sampled 1 million books.
Fiction Works of Fiction.

American English Books published in the US.
British English Books published in Britain.

The sizes of the different corpora are detailed in Ta-
ble 1.
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Figure 3: Syntactic-ngram examples. Non-content words are
grayed, functional markers appearing only in the extended-*
collections are dashed. (a) node (b) extended-node (c) arcs (d)
arcs, including the coordinating word (e) extended-arcs, includ-
ing a preposition (f) triarcs (g) extended-triarcs (h) quadarcs,
including a preposition.

Counts Each syntactic ngram in each of the sub-
corpora is coupled with a corpus-level count as well
as counts from each individual year. To keep the
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Corpus #Books #Pages # Sentences # Tokens
All 35M  925.7M 17.6B 345.1B
IM 1M 291.1M 5.1B 101.3B
Fiction 817K 231.3M 4.7B 86.1B
American 14M  387.6M 7.9B 146.2B
British 423K 1249M 2.4B 46.1B

Table 1: Corpora sizes.

data manageable, we employ a frequency threshold
of 10 on the corpus-level count.

Data Processing We ignored pages with over 600
white-spaces (which are indicative of OCR errors or
non-textual content), as well as sentences of over 60
tokens. Table 1 details the sizes of the various cor-
pora.

After OCR, sentence splitting and tokenization,
the corpus went through several stages of syntactic
processing: part-of-speech tagging, syntactic pars-
ing, and syntactic-ngrams extraction.

Part-of-speech tagging was performed using a
first order CRF tagger, which was trained on a union
of the Penn WSJ Corpus (Marcus et al., 1993), the
Brown corpus (Kucera and Francis, 1967) and the
Questions Treebank (Judge et al., 2006). In addition
to the diverse training material, the tagger makes use
of features based on word-clusters derived from tri-
grams of the Books corpus. These cluster-features
make the tagger more robust on the books domain.
For further details regarding the tagger, see Lin et al.
(2012).

Syntactic parsing was performed using a re-
implementation of a beam-search shift-reduce de-
pendency parser (Zhang and Clark, 2008) with a
beam of size 8 and the feature-set described in
Zhang and Nivre (2011). The parser was trained
on the same training data as the tagger after 4-way
jack-knifing so that the parser is trained on data with
predicted part-of-speech tags. The parser provides
state-of-the-art syntactic annotations for English.?

3Evaluating the quality of syntactic annotation on such a var-
ied dataset is a challenging task on its own right — the underly-
ing corpus includes many different genres spanning different
time periods, as well as varying levels of digitization and OCR
quality. It is extremely difficult to choose a representative sam-
ple to manually annotate and evaluate on, and we believe no
single number will do justice to describing the annotation qual-
ity across the entire dataset. On top of that, we then aggregate
fragments and filter based on counts, further changing the data
distribution. We feel that it is better not to provide any numbers
than to provide inaccurate, misleading or uninformative num-



6 Conclusion

We created a dataset of syntactic-ngrams based on
a very large literary corpus. The dataset contains
over 10 billion unique items covering a wide range
of syntactic structures, and includes a temporal di-
mension.

The dataset is available for download at
http://storage.googleapis.com/
books/syntactic-ngrams/index.html
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