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Abstract

In this paper we present our systems for cal-
culating the degree of semantic similarity be-
tween two texts that we submitted to the Se-
mantic Textual Similarity task at SemEval-
2013. Our systems predict similarity using
a regression over features based on the fol-
lowing sources of information: string similar-
ity, topic distributions of the texts based on
latent Dirichlet allocation, and similarity be-
tween the documents returned by an informa-
tion retrieval engine when the target texts are
used as queries. We also explore methods for
integrating predictions using different training
datasets and feature sets. Our best system was
ranked 17th out of 89 participating systems.
In our post-task analysis, we identify simple
changes to our system that further improve our
results.

1 Introduction

Semantic Textual Similarity (STS) measures the de-
gree of semantic similarity or equivalence between
a pair of short texts. STS is related to many natural
language processing applications such as text sum-
marisation (Aliguliyev, 2009), machine translation,
word sense disambiguation, and question answering
(De Boni and Manandhar, 2003; Jeon et al., 2005).

Two short texts are considered similar if they both
convey similar messages. Often it is the case that
similar texts will have a high degree of lexical over-
lap, although this isn’t always so. For example,
SC dismissed government’s review plea in Vodafone
tax case and SC dismisses govt’s review petition on
Vodafone tax verdict are semantically similar. These
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texts have matches in terms of exact words (SC,
Vodafone, tax), morphologically-related words (dis-
missed and dismisses), and abbreviations (govern-
ment’s and govt’s). However, the usages (senses) of
plea and petition, and case and verdict are also sim-
ilar.

One straightforward way of estimating semantic
similarity of two texts is by using approaches based
on the similarity of the surface forms of the words
they contain. However, such methods are not capa-
ble of capturing similarity or relatedness at the lexi-
cal level, and moreover, they do not exploit the con-
text in which individual words are used in a target
text. Nevertheless, a variety of knowledge sources
— including part-of-speech, collocations, syntax,
and domain — can be used to identify the usage or
sense of words in context (McRoy, 1992; Agirre and
Martinez, 2001; Agirre and Stevenson, 2006) to ad-
dress these issues.

Despite their limitations, string similarity mea-
sures have been widely used in previous seman-
tic similarity tasks (Agirre et al., 2012; Islam and
Inkpen, 2008). Latent variable models have also
been used to estimate the semantic similarity be-
tween words, word usages, and texts (Steyvers and
Griffiths, 2007; Lui et al., 2012; Guo and Diab,
2012; Dinu and Lapata, 2010).

In this paper, we consider three different ways of
measuring semantic similarity based on word and
word usage similarity:

1. String-based similarity to measure surface-
level lexical similarity, taking into account
morphology and abbreviations (e.g., dismisses
and dismissed, and government’s and govt’s);
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2. Latent variable models of similarity to cap-
ture words that have different surface forms,
but that have similar meanings or that can be
used in similar contexts (e.g., petition and plea,
verdict and case); and

3. Topical/domain similarity of the texts with re-
spect to the similarity of documents in an ex-
ternal corpus (based on information-retrieval
methods) that are relevant to the target texts.

We develop features based on all three of these
knowledge sources to capture semantic similarity
from a variety of perspectives. We build a regres-
sion model, trained on STS training data which has
semantic similarity scores for pairs of texts, to learn
weights for the features and rate the similarity of test
instances. Our approach to the task is to explore the
utility of novel features or features that have not per-
formed well in previous research, rather than com-
bine these features with the myriad of features that
have been proposed by others for the task.

2 Text Similarity Measures

In this section we describe the various features used
in our system.

2.1 String Similarity Measures (SS)

Our first set of features contains various string simi-
larity measures (SS), which compare the target texts
in terms of the words they contain and the order
of the words (Islam and Inkpen, 2008). In the Se-
mEval 2012 STS task (Agirre et al., 2012) such
features were used by several participants (Biggins
et al., 2012; Bar et al., 2012; Heilman and Mad-
nani, 2012), including the first-ranked team (Bir et
al., 2012) who considered string similarity measures
alongside a wide range of other features.

For our string similarity features, the texts were
lemmatized using the implementation of Lancaster
Stemming in NLTK 2.0 (Bird, 2006), and all punc-
tuation was removed. Limited stopword removal
was carried out by eliminating the words a, and, and
the. The output of each string similarity measure
is normalized to the range of [0, 1], where 0 indi-
cates that the texts are completely different, while 1
means they are identical. The normalization method
for each feature is described in Salehi and Cook (to
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appear), wherein the authors applied string similar-
ity measures successfully to the task of predicting
the compositionality of multiword expressions.

Identical Unigrams (IU): This feature measures
the number of words shared between the two texts,
irrespective of word order.

Longest Common Substring (LCS): This mea-
sures the longest sequence of words shared between
the two texts. For example, the longest common
substring between the following sentences is bolded:

A woman and man are dancing in the
rain.
A couple are dancing in the street.

Levenshtein (LEV1): Levenshtein distance (also
known as edit distance) calculates the number of
basic word-level edit operations (insertion, deletion
and substitution) to transform one text into the other:

Levenshtein with substitution penalty (LEV2):
This feature is a variant of LEV1 in which substi-
tution is considered as two edit operations: an inser-
tion and a deletion (Baldwin, 2009).

Smith Waterman (SW): This method is designed
to locally align two sequences of amino acids (Smith
and Waterman, 1981). The algorithm looks for
the longest similar regions by maximizing the num-
ber of matches and minimizing the number of in-
sertion/deletion/substitution operations necessary to
align the two sequences. In other words, it finds the
longest common sequence while tolerating a small
number of differences. We call this sequence, the
“aligned sequence”. It has length equal to or greater
than the longest common sequence.

Not Aligned Words (NAW): As mentioned
above, SW looks for similar regions in the given
texts. Our last string similarity feature shows the
number of identical words not aligned by the SW al-
gorithm. We used this feature to examine how simi-
lar the unaligned words are.

These six features (IU, LCS, LEV1, LEV2, SW,
and NAW) form our string similarity (SS) features.
LEV2, SW, and NAW have not been previously con-
sidered for STS.



2.2 Topic Modelling Similarity Measures (TM)

The topic modelling features (TM) are based on La-
tent Dirichlet Allocation (LDA), a generative prob-
abilistic model in which each document is mod-
eled as a distribution over a finite set of topics, and
each topic is represented as a distribution over words
(Bleietal., 2003). We build a topic model on a back-
ground corpus, and then for each target text we cre-
ate a topic vector based on the topic allocations of
its content words, based on the method developed
by Lui et al. (2012) for predicting word usage simi-
larity.

The choice of the number of topics, 7', can
have a big impact on the performance of this
method. Choosing a small 7" might give overly-
broad topics, while a large 7" might lead to un-
interpretable topics (Steyvers and Griffiths, 2007).
Moreover smaller numbers of topics have been
shown to perform poorly on both sentence simi-
larity (Guo and Diab, 2012) and word usage sim-
ilarity tasks (Lui et al., 2012). We therefore build
topic models for 33 values of 7' in the range
2,3,5,8,10,50, 80,100, 150, 200, ...1350.

The background corpus used for generating the
topic models is similar to the COL-WTMEF sys-
tem (Guo and Diab, 2012) from the STS-2012 task,
which outperformed LDA. In particular, we use
sense definitions from WordNet, Wiktionary and all
sentences from the Brown corpus. Similarity be-
tween two texts is measured on the basis of the simi-
larity between their topic distributions. We consider
three vector-based similarity measures here: Cosine
similarity, Jensen-Shannon divergence and KL di-
vergence. Thus for each target text pair we extract
99 features corresponding to the 3 similarity mea-
sures for each of the 33 T settings. These features
are used as the TM feature set in the systems de-
scribed below.

2.3 IR Similarity Measures (IR)

The information retrieval-based features (IR) were
based on a dump of English Wikipedia from Novem-
ber 2009. The entire dump was stripped of markup
and tokenised using the OpenNLP tokeniser. The
tokenised documents were then parsed into TREC
format, with each article forming an individual doc-
ument. These documents were indexed using the
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Indri IR engine! with stopword removal. Each
of the two target texts was issued as a full text
query (without any phrases) to Indri, and the first
1000 documents for each text were returned, based
on Okapi term weighting (Robertson and Walker,
1994). These resultant document lists were then
converted into features using a number of set- and
rank-based measures: Dice’s coefficient, Jaccard in-
dex, average overlap, and rank-biased overlap (the
latter two are described in Webber et al. (2010)).
The first two are based on simple set overlap and
ignore the ranks; average overlap takes into account
the rank, but equally weights high- and low-ranking
documents; and rank-biased overlap weights higher-
ranked items higher.

In addition to comparisons of the document rank-
ings for a given target text pair, we also consid-
ered a method that compared the top-ranking doc-
uments themselves. To compare two texts, we ob-
tain the top-100 documents using each text as a
query as above. We then calculate the similarity be-
tween these two sets of resultant documents using
the y2-based corpus similarity measure of Kilgarriff
(2001). In this method the y? statistic is calculated
for the 500 most frequent words in the union of the
two sets of documents (corpora), and is interpreted
as the similarity between the sets of documents.

These 5 IR features (4 rank-based, and 1
document-based) are novel in the context of STS,
and are used in the compound systems described be-
low.

3 Compound systems

3.1 Ridge regression

Each of our features represents a (potentially noisy)
measurement of the semantic textual similarity be-
tween two texts. However, the scale of our fea-
tures varies, e.g., [0, 1] for the string similarity fea-
tures vs. unbounded for KL divergence (one of the
topic modelling features). To learn the mapping be-
tween these features and the graded [0, 5] scale of
the shared task, we made use of a statistical tech-
nique known as ridge regression, as implemented in
scikit-learn.? Ridge regression is a form of
linear regression where the loss function is the ordi-

'http://www.lemurproject.org/indri/
2http://scikit-learn.org



nary least squares, but with an additional L2 regular-
ization term. In our empirical evaluation, we found
that ridge regression outperformed linear regression
on our feature set. For brevity, we only present re-
sults from ridge regression.

3.2 Domain Adaptation

Domain adaptation (Daumé and Marcu, 2006) is the
general term applied to techniques for using labelled
data from a related distribution to label data from a
target distribution. For the 2013 Shared Task, no
training data was provided for the target datasets,
making domain adaptation an important considera-
tion. In this work, we assume that each dataset rep-
resents a different domain, and on this basis develop
approaches that are sensitive to inter-domain differ-
ences.

We tested two simple approaches to including do-
main information in our trained model. The first ap-
proach, which we will refer to as flagging, simply in-
volves appending a boolean vector to each training
instance to indicate which training dataset it came
from. The vector has length D, equal to the number
of training datasets (3 for this task, because we train
on the STS 2012 training data). All the values of the
vector are 0, except for a single 1 according to the
dataset that the training instance is drawn from. For
test data, the entire vector consists of 0s.

The second approach we considered is based on
metalearning, and we will refer to it as domain
stacking. In domain stacking, we train a regressor
for each domain (the level O regressors (Wolpert,
1992)). Each of these regressors is then applied
to a test instance to produce a predicted value (the
level O prediction). These predictions are then com-
bined using a second regressor (the level 1 regres-
sor), to produce a final prediction for each instance
(the level 1 prediction). This approach is closely
related to feature stacking (Lui, 2012) and stacked
generalization (Wolpert, 1992). A general princi-
ple of metalearning is to combine multiple weaker
(“less accurate”) predictors — termed level O pre-
dictors — to produce a stronger (“more accurate”)
predictor — the level 1 predictor. In stacked gener-
alization, the level O predictors are different learning
algorithms. In feature stacking, they are the same
algorithm trained on different subsets of features, in
this work corresponding to different methods for es-
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timating STS (Section 2). In domain stacking, the
level O predictions are obtained from subsets of the
training data, where each subset corresponds to all
the instances from a single dataset (e.g. MSRpar or
SMTeuroparl). In terms of subsampling the training
data, this technique is related to bagging (Breiman,
1996). However, rather than generating new train-
ing sets by uniform sampling across the whole pool
of training data, we treat each domain in the train-
ing dataset as a unique sample. Finally, we also ex-
periment with feature-domain stacking, in which the
level O predictions are obtained from the cross prod-
uct of subsets of the training data (as per domain
stacking) and subsets of the feature set (as per fea-
ture stacking). We report results for all 3 variants in
Section 5.

This framework of feature-domain stacking can
be applied with any regression or classification al-
gorithm (indeed, the level O and level 1 predictors
could be trained using different algorithms). In this
work, all our regressors are trained using ridge re-
gression (Section 3.1).

4 Submitted Runs

In this section we describe the three official runs we
submitted to the shared task.

4.1 Runl — Bahar

For this run we used just the SS feature set, aug-
mented with flagging for domain adaptation. Ridge
regression was used to train a regressor across the
three training datasets (MSRvid, MSRpar, SMTeu-
roparl). Each instance was then labelled using the
output of the regressor, and the output range was lin-
early re-scaled to [0, 5] as it occasionally produced
values outside of this range. Although this approach
approximates STS using only lexical textual similar-
ity, it was our best-performing system on the training
data (Table 1). Furthermore the SS features are ap-
pealing because of their simplicity and because they
do not make use of any external resources.

4.2 Run2 — Concat

In this run, we concatenated the feature vectors
from all three of our feature sets (SS, TM and
IR), and again trained a regressor on the union of
the MSRvid, MSRpar and SMTeuroparl training
datasets. As in Runl, the output of the regression



FSet FLFSDS MSRpar MSRvid SMTeuroparl Ave FSet FLFSDS OnWN FNWN Headlines SMT Ave

SS 0.522  0.537 0.526 0.528 SS 0.340 0.366 0.688 0.325 0.453
*SS Vv 0.552 0.533 0.562 0.549 ™SS Vv 0.349 0381 0.711 0.350 0.473
™ 0.270 0.479 0.425 0.391 ™ 0.648 0.358 0.516 0.209 0.433

™ Vv 0.250 0.580 0.427 0.419 ™ Vv 0.701 0.368 0.614 0.287 0.506

IR 0.264  0.759 0.407 0.477 IR 0.561 -0.006 0.610 0.228 0.419

IR V 0.291 0.754 0.400 0.482 IR vV 0.596 0.002 0.621 0.256 0.441

(+) ALL 0.401 0.543 0.513 0.485 (+) ALL 0.679 0.337 0.709 0.323 0.542
ALL VvV 0.377  0.595 0.516 0.496 ALL Vv 0.704 0365 0.718 0.344 0.560
ALL v 0.385 0.587 0.520 0.497 ALL v 0.673 0.298 0.714 0.324 0.539
ALL v 0.452  0.637 0.472 0.521 ALL v 0618 0.264 0.717 0.357 0.534
ALL v V 0.429 0.619 0.526 0.524 ALL v V 0.658 0.309 0.721 0.330 0.540
ALL v v 0.429 0.627 0.526 0.527 ALL v v 0557 0.142  0.694 0.280 0.475
(=)ALL v v V 0.441 0.645 0.527 0.538 (-)ALL v v v 0614 0.186 0.706 0314 0.509
Table 1: Pearson’s p for each feature set (FSet), Table 2: Pearson’s p for each feature set (FSet),

as well as combinations of feature sets and adap-
tation strategies, on each training dataset, and the
micro-average over all training datasets. (*), (+),
and (—) denote Runl, Run2, and Run3, respectively,
our submissions to the shared task; FL=Flagging,
FS=Feature stacking, DS=Domain stacking.

was also linearly re-scaled to the [0, 5] range. Un-
like the previous run, the flagging approach to do-
main adaptation was not used. This approach re-
flects a simple application of machine learning to in-
tegrating data from multiple feature sets and training
datasets, and provides a useful point of comparison
against more sophisticated approaches (i.e., Run3).

4.3 Run3 — Stacking

In this run, we focused on an alternative method
to integrating information from multiple feature sets
and training datasets, namely feature-domain stack-
ing, as discussed in Section 3.2. In this approach, we
train nine regressors using ridge regression on each
combination of the three training datasets and three
feature sets. Thus, the level 1 representation for each
instance is a vector of nine predictions. For the train-
ing data, when computing the level 1 features for the
same training dataset from which a given instance is
drawn, 10-fold cross-validation is used. Ridge re-
gression is again used to combine the level 1 repre-
sentations and produce the final prediction for each
instance. In addition to this, we also simultaneously
apply the flagging approach to domain adaptation.
This approach incorporates all of our domain adap-
tation efforts, and in initial experiments on the train-
ing data (Table 1) it was our second-best system.
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as well as combinations of feature sets and adap-
tation strategies, on each test dataset, and the
micro-average over all test datasets. (*), (+), and
(—) denote Runl, Run2, and Run3, respectively,
our submissions to the shared task; FL=Flagging,
FS=Feature stacking, DS=Domain stacking.

5 Results

For the STS 2013 task, the organisers advised par-
ticipants to make use of the STS 2012 data; we took
this to mean only the training data. In our post-task
analysis, we realised that the entire 2012 dataset, in-
cluding the testing data, could be used. All our of-
ficial runs were trained only on the training data for
the 2012 task (made up of MSRpar, MSRvid and
SMTeuroparl). We first discuss preliminary find-
ings training and testing on the (STS 2012) training
data, and then present results for the (2013) test data.
Post-submission, we re-trained our systems includ-
ing the 2012 test data.

5.1 Experiments on Training Data

We evaluated our models based on a leave-one-out
cross-validation across the 3 training datasets. Thus,
for each of the training datasets, we trained a sep-
arate model using features from the other two. We
considered approaches based on each individual fea-
ture set, with and without flagging. We further con-
sidered combinations of feature sets using feature
concatenation, as well as feature and domain stack-
ing, again with and without flagging.® Results are

3We did not consider domain stacking with flagging.



FSet  FL FS DS OnWN (3) FNWN (9) Headlines (0) SMT (9) Ave ()
SS 0.3566 (+.0157) 0.3741 (+.0071) 0.6994 (+.0111)  0.3386 (+.0131) 0.4663 (+.0133)
(*) SS v 0.3532 (+.0042) 0.3809 (—.0004) 0.7122 (+.0003)  0.3417 (—.0090) 0.4714 (—.0016)
™ 0.6748 (4.0265) 0.3939 (4-.0349) 0.5930 (+.0770)  0.2563 (+.0472) 0.4844 (4.0514)
™ v 0.6269 (—.0743) 0.3519 (—.0162) 0.5999 (—.0142) 0.2653 (—.0223) 0.4743 (—.0317)
IR 0.6632 (+.1015) 0.1026 (+.1093)  0.6383 (—.0281)  0.2987 (+.0701) 0.4863 (+.0673)
IR v 0.6720 (4.0755) 0.0861 (4-.0841) 0.6316 (+.0097) 0.2811 (+.0244) 0.4790 (4.0680)
(+) ALL 0.6976 (+.0006) 0.4350 (+.0976) 0.7071 (—.0014)  0.3329 (+.0099) 0.5571 (+.0151)
ALL v 0.6667 (—.0373) 0.4138 (+.0490) 0.7210 (+.0029)  0.3335 (—.0105) 0.5524 (—.0076)
ALL v 0.6889 (4.0149) 0.4620 (+.1636) 0.7309 (+.0167)  0.3538 (+.0295) 0.5721 (+.0331)
ALL v 0.6765 (—.0185) 0.4675 (+.1578) 0.7337 (+.0126)  0.3552 (+.0252) 0.5709 (+.0369)
ALL v 7 0.6369 (+.0208) 0.3615 (+.0970) 0.7233 (+.0060)  0.3736 (+.0157) 0.5554 (+.0154)
ALL v 0.6736 (+.1165) 0.4250 (+.2821) 0.7237 (+0.0297) 0.3404 (+0.0603)  0.5583(+.0833)
(—) ALL v v Vv 0.6772 (+.0632) 0.3992 (+.2127) 0.7315 (+-.0251) 0.3300 (+0.0186) 0.5572 (4.0482)

Table 3: Pearson’s p for each feature set (FSet), as well as combinations of feature sets and adaptation
strategies, on each test dataset, and the micro-average over all test datasets, using features from all 2012
data (test + train). (*), (+), and (—) denote Runl, Run2, and Run3, respectively, our submissions to the
shared task; FL=Flagging, FS=Feature stacking, DS=Domain stacking. § denotes the difference in system

performance after adding the additional training data.

reported in Table 1.

The best results on the training data were achieved
using only our SS feature set with flagging (Runl),
with an average Pearson’s p of 0.549. This fea-
ture set also gave the best performance on MSR-
par and SMTeuroparl, although the IR feature set
was substantially better on MSRvid. On the training
datasets, our approaches that combine feature sets
did not give an improvement over the best individ-
ual feature set on any dataset, or overall.

5.2 Test Set Results

STS 2013 included four different test sets. Table 2
presents the Pearson’s p for the same methods as
Section 5.1 — including our submitted runs — on
the test data. Runl drops in performance on the test
set as compared to the training set, where the other
two runs are more consistent, suggesting that lexi-
cal similarity does not generalise well cross-domain.
Table 4 shows that all of our systems performed
above the baseline on each dataset, except Run3 on
FNWN. Table 4 also shows that Run2 consistently
performed well on all the datasets when compared
to the median of all the systems submitted to the task
(Agirre et al., to appear).

Run2, which was based on the concatenation of
all the feature sets, performed well compared to the
stacking-based approaches on the test set, whereas
the stacking approaches all outperformed Run2 on
the training datasets. This is likely due to the
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SS features being more effective for STS predic-
tion in the training datasets as compared to the test
datasets. Based on the training datasets, the stack-
ing approaches placed greater weight on the pre-
dictions from the SS feature set. This hypothe-
sis is supported by the result on Headlines, where
the SS feature set does relatively well, and thus the
stacking approaches tend to outperform the simple
concatenation-based method. Finally, an extension
of Run2 with flagging (not submitted to the shared
task) was the best of our methods on the test data.

5.3 Error Analysis

To better understand the behaviour of our systems,
we examined test instances and made the following
observations. Systems based entirely on the TM fea-
tures and domain adaptation consistently performed
well on sentence pairs for which all of our other sys-
tems performed poorly. One example is the follow-
ing OnWN pair, which corresponds to definitions of
newspaper: an enterprise or company that publishes
newsprint and a business firm that publishes news-
papers. Because these texts do not share many com-
mon words, the SS features cannot capture their se-
mantic similarity.

Stacking based approaches performed well on text
pairs which are complex to comprehend, e.g., Tiwo
German tourists, two pilots killed in Kenya air crash
and Senator Reid involved in Las Vegas car crash,
where the individual methods tend to score lower



OnWN
.349 (71)
679 (18)
614 (28)
704 (15)
.353 (70)
697 (14)
677 (19)
.688 (17)
.283 (81)
.528 (45)

843 (1)

FNWN
381 (23)
337 (33)
187 (71)
365 (28)
381 (23)

435 (9)
399 (17)

462 (7)
215 (67)
327 (45)

581 (1)

SMT Ave
351 (18) .473 (49)
323 (43) .542 (17)
314 (47) .509 (29)
344 24) .560 (7)
341 (25) 471 (54)
332 (35) .557(9)
330 (38) .557 (8)
353 (18) 572 (4)
.286 (65) .364 (73)
318 (45) .480 (45)

403 (1) .618 (1)

System Headlines
(+) Runl .711 (15)
(+) Run2 .709 (17)
(4+) Run3 .706 (18)

Best .718 (14)

(*) Runl .712 (14)
(*) Run2 .707 (18)
(%) Run3 .731 (11)
(%) Best .730 (11)
Baseline .540 (67)
Median .640 (45)
Best-Score  .783 (1)

Table 4: Pearson’s p (and projected ranking) of runs.
The upper 4 runs are trained only on STS 2012 train-
ing data. (+) denotes runs that were submitted for
evaluation. (x) denotes systems trained on STS 2012
training and test data. For comparison, we include
“Best”, the highest-scoring parametrization of our
system from our post-task analysis (Table 3). We
also include the organiser’s baseline, as well as the
median and best systems for each dataset across all
competitors.

than the human rating, but stacking was able to pre-
dict a higher score (presumably based on the fact
that no method predicted the text pair to be strongly
dissimilar; rather, all methods predicted there to be
somewhat low similarity).

In some cases, the texts are on a similar topic,
but semantically different, e.g., Nigeria mourns over
193 people killed in plane crash and Nigeria opens
probe into deadly air crash. In such cases, systems
based on SS features and stacking perform well.
Systems based on TM and IR features, on the other
hand, tend to predict overly-high scores because the
texts relate to similar topics and tend to have similar
relevant documents in an external corpus.

5.4 Results with the Full Training dataset

We re-trained all the above systems by extending the
training data to include the 2012 test data. Scores on
the 2013 test datasets and the change in Pearson’s p
after adding the extra training data (denoted J) are
presented in Table 3.

In general, the addition of the 2012 test data to
the training dataset improves the performance of the
system, though this is often not the case for the flag-
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ging approach to domain adaptation, which in some
instances drops in performance after adding the ad-
ditional training data. The biggest improvements
were seen for feature-domain stacking, particularly
on FNWN. This suggests that feature-domain stack-
ing is more sensitive to the similarity between train-
ing data and test data than flagging, but also that it
is better able to cope with variety in training do-
mains than flagging. Given that the pool of anno-
tated data for the STS task continues to increase,
feature-domain stacking is a promising approach to
exploiting the differences between domains to im-
prove overall STS performance.

To facilitate comparison with the published re-
sults for the 2013 STS task, we present a condensed
summary of our results in Table 4, which shows the
absolute score as well as the projected ranking of
each of our systems. It also includes the median and
baseline results for comparison.

6 Conclusions and Future Work

In this paper we described our approach to the
STS SemEval-2013 shared task. While we did not
achieve high scores relative to the other submit-
ted systems on any of the datasets or overall, we
have identified some novel feature sets which we
show to have utility for the STS task. We have
also compared our proposed method’s performance
with a larger training dataset. In future work, we
intend to consider alternative ways for combining
features learned from different domains and training
datasets. Given the strong performance of our string
similarity features on particular datasets, we also in-
tend to consider combining string and distributional
similarity to capture elements of the texts that are not
currently captured by our string similarity features.
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